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SUMMARY

Objective

To compare the predictive validity of two computerized adaptive testing (CAT) sirategies with the predictive
validity of conventional Armed Services Vocational Aptitude Battery (ASVAB) subtests in a military training
environment.

Background

In the last 10 years, CAT has emerged as a means of improving the quality of ability measurements for armed
services personnel. Previous research on CAT has been primarily concerned with investigations of the accuracy
and precision of ability estimates derived from various methods of implementing CAT in comparison to
conventional ability tests. The few validity studies comp=ring CAT and conventional tests have not examined the
predictive validity of CAT in a military training environment. In addition. previous research has been restricted to
a single ability domain and has not directly compared the validities of different adaptive iesting strategies. The
present study was designed to investigate the validity of two CAT strategies using *-.0 ability domains.

Approach

Conventional and adaptive tests were administered 1o a large group of Air Force recruits who were beginning a
Jet Engine Mechanic (JEM) training course. The validity criterion was their final grade at the end of the course.

Specifics

Method. Each of 495 JEM trainees was administered three Arithmetic Reasoning (AR) tests and three Word
Knowledge (WK) tests by computer. Bayesian and stratified maximum information (STMI) adaptive tests and
conventional ASVAB subtesis were adminislered in each ability domain. To control warmup and fatigue effects.
the order of test administration was counterbalanced in subgroups of the examinees.

In each ability domain, adaptive tests selected items from the same item pool. A special item fill-in procedure
was used so that duplicate items would not be administered in the adaptive tests. All test items were calibrated. and
the adaptive testing strategies were implemented, using Birnbaum’s three-parameter logistic item response model. ;
In addition to conventional number-correct scores. Bayesian and maximum likelihood ability ~stimates were also !
generated for the ASVAB subtests. '

Validity data were analyzed by multivariate linear-medel analyses with testing-strategy/scoring-method
(TSSM). item type (AR, WK). and/or order of administration as independent variables and with single-test and
composite validities as dependent variables. Other dependent variables included the distributional and
information characteristics of the ability estimates from the various TSSM combinations. computer and examinee '
response limes, and the effect of fixed versus variable entry in the adaptive tests.

Findings and discussion. The results showed longer examinee response times for the adaptive tests in
comparison to the conventional tests. This result was expected because the adaptive test presents items which are
on the average more difficult for the examinee thereby prohibiting exclusion of the easy and the difficult items
which may be answered quickly. However, in field application. the adaptive test would employ fewer 1lems than
the conventional test so that testing time should not exceed that of conventional tests. The adaptive tests were of
more appropriate item difficulty for the examinees than were the conventional tests. Information analyses showed »
that the adaptive tests provided considerably higher levels of test score information at all ability levels than did the
conventional lests.

Results of the validity analyses, both at the single-test level and for test-score composites. showed no
significant differences in validities between the conventional and adaptive tests. There were some differences




between the validities of the adaptive tests as they interacted with order of test administration and item type. The
maximum likelihood scoring of ASVAB resulted in significantly lower validities than did Bayesian or number-

correc! scoring.

Although there were no significant differences in validities between full-length adaptive and conventional
tests, under the fixed-eniry condition the STMI strategy achieved validities that approximated 1hose of the ASVAB
tests while requiring only one-third to one-half the number of items.

Conclusions

The fact that mean levels of criterion-related validity were not significantly different for the adaptive and
ASVARB tests is interpreted as supportive of the use of CAT in military testing, due to the other advantages inherent
in CAT. These advantages include higher levels of measurement precision, immediate scoring of tests, immediate
availability of test scores for use in making military assignment decisions, and alleviation of the test compromise

problem.
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PREFACE

This study was conducted under task 771918, Selection and Classification
Technologies. The research focuses on the development of procedures and
techniques to refine and improve measurement devices used in the Air Force

operational testing program. |

This woric is part of a continuing series of studies to evaluate the

efficacy of computer driven adaptive testing. The effort supports the sub-
thrust area of Assessment of Personnel Qualifications, under the major thrust !

area of Manpower and Force Management. i
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PrepIcTIVE VALIDITY OF CONVENTIONAL AND ADAPTIVE TESTS
IN AN AIR FORCE TRAINING ENVIRONMENT

Previous research has compared computerized adaptive ability test-
ing to conventional tests in a number of ways. Early research, com-
prised mainly of theoretical studies and simulation studies, demonstrat-
ed higher levels of measurement accuracy and precision for adaptive
tests than for comparable conventional tests. These studies also showed
that, even with substantial decreases in the length of adaptive tests,
it was possible to obtain the same levels of measurement precision as
with comparable conventional tests. Other studies, using live groups of
examinees, reanalyzed data from conventional tests as though the data
were from tests that had been adaptively administered. These studies
supported the theoretical studies in showing potential decreases in test
length, with no decreases in reliability, precision, or validity (see
Weiss & Betz, 1973, for a review of pre~1973 research; also see, e.g.,
Vale, 1975, and McBride, 1979).

Early studies in which adaptive ability tests had been administered
to real examinees were concerned primarily with the test-retest reli-
ability of adaptive tests (e.g., Betz & Welss, 1973, 1975; Larkin &
Weiss, 1974; Vale & Weiss, 1975). These studies tended to show higher
test-retest reliability for adaptive tests in comparison to conventional
tests; however, the studies were limited to data obtained from college
students.

More recently, live-testing validity studies have begun to appear.
In one criterion-related validity study, Thompson and Weiss (1980) cor-
related scores on adaptive and conventional tests with grade-point aver-
ages (GPA) in groups of college students. Their data showed signifi-
cantly higher correlations with GPA for some adaptive tests in compari-
son to conventional tests, even though the adaptive tests were substan-
tially shorter than the comparable conventional tests.

In another live-testing study using college students, Kingsbury and
Welgs (1980) correlated scores on alternate forms of conventional and
adaptive tests with each other and with a 120-item conventional "crite-
rion” test. Although their results showed higher alternate-forms reli-
abilities for the adaptive tests, the conventional test had higher cor-
relations with the criterion test than did the adaptive test, at test
lengths from 5 to 30 items.

McBride (1980) reported the first validity study of adaptive tests
in comparison to conventional tests using a military recruit population.
His data showed higher "concurrent validities” (correlations with a 50-
item criterion test) for adaptive tests at test lengths up to 10 items,
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but equal or slightly higher validities for conventional tests from 15
to 30 items in length. A replication of McBride's study by Martin,
McBride, and Weiss (in press), using a sample drawn from the same mili-
tary recruit population, the same item pools and predictor tests, and
the same 50-item criterion test, showed the concurrent-validity correla-
tions for adaptive tests to be uniformly higher than for conventional
tests for all test lengths from 1 to 30 {tems. Their data showed that
an adaptive test of 11 items had a concurrent-validity correlation
equivalent to a conventional test of 30 items.

While many of the results obtained in these previous validity stud-
ies are supportive of the use of adaptive tests, their generality with
regard to practical applications of adaptive testing in a military envi-
ronment is somewhat limited. First, the criteria used by Kingsbury and
Weiss, by McBride, and by Martin et al. were long conventional tests
containing the same types of items used in the adaptive and conventional
predictor tests. Thus, the validity evidence presented was not predic-
tive validity bagsed on an operational military criterion. The studies
reported by Kingsbury and Weiss and by Thompson and Weiss used college
students, not military enlistees. Further, all four studies used only
verbal ability items in the predictor tests, thus limiting their gener-
ality to that ability domain. Finally, with the exception of the Thomp-
son and Weiss study, the studies were restricted to the use of only one
adaptive testing strategy, and none of the four studies used an opera-
tional ASVAB subtest as the conventional predictor test. Thus, research
on the criterion-related validity of adaptive tests in comparison with
operational ASVAB subtests is needed.

Purgose

The present study was designed to investigate the criterion-related
validity of adaptive tests using ASVAB types of items in comparison to
operational ASVAB tests. Two ability domains were used—-Word Knowledge
(WK) and Arithmetic Reasoning (AR)--to study the generality of the find-
ings across ability domains, and to invest gate the validity of compos-
ites derived from combining the ability subtests in different ways. The
criterion used was an operational military-training criterion obtained
from a group of Air Force recruits who were tested in the early stages
of their technical training. Finally, more than one adaptive testing
strategy was used in order to investigate the generality of findings
across different methods of adaptive testing.

METHOD

Calibration of Test Items

Test items were calibrated using Birnbaum's (1968, p. 405) three-
parameter logistic model. This item response theory (IRT) model assumes
that the probability of a correct response to an item is given by the
function
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P(E) = c + [1.7a(0 < b)) ° (1]

1l +e

where a is an item discrimination parameter,
is an item difficulty parameter,

is a lower asymptote parameter,
indexes the person's level of ability,
is a constant (approximately 2.718).

[0 oo|o

and

Two item pools were calibrated for the experimental adaptive tests--an
AR item pool and a WK item pool.

Arithmetic Reasoning

The AR item pool was comprised of quantitative reasoning problems
of the type commonly found in tests of mathematical aptitude (e.g.,
Armed Forces Vocational Testing Group, 1974, p. 9; Educational Testing
Service, 1978, pp. 12-14). A total of 264 four-alternative multiple-
choice AR items were obtalned from the Air Force Human Resources Labora-
tory (AFHRL); these items had been previously prepaied and assembled
into two 132-item test booklets designated PE7701 and PE7702.

Since all tests given in this research were to be administered by
character-mode cathode-ray tube (CRT) terminals, six items in PE7701 and
10 items in PE7702 that required accompanying diagrams were not included
in the calibration of the AR item pool. AFHRL provided item response
d: ma that had previously been obtained from Air Force enlistees who were
administered either one-half or all of either PE7701 or PE7702 during
their period of basic military training at Lackland AFB. Table 1 shows
the nature of the data available for the AR item-pool calibration.

Table la shows that 842 Air Force enlistees had taken the first
half of PE7701, 914 enlistees had taken the second half, and 155 en-
listees had taken the entire test. Of 66 items appearing in the first
half of the test, 61 were usable for this research. Of 66 items appear-
ing in the second half of the test, 65 were usable. One examinee who
answered all attempted questions correctly and three examinees who at-
tempted fewer than 32 questions were eliminated from the PE7701 calibra-
tion. Because some of the remaining examinees omitted or did not reach
various items, data were available from a minimum of 849 to a maximum of
1,040 individuals for the items calibrated in PE7701.

Table 1lb gives the sample sizes and the number of items calibrated
in PE7702. Sixteen examinees who attempted fewer than 32 questions were
eliminated from this calibration. As for PE7701, some of the remaining
examinees omitted or did not reach some of the items, resulting in cali-
bration sample sizes of 819 to 939 individuals for the items in PE7702.
Of the 248 items calibrated in PE7701 and PE7702, 209 were calibrated
using the responses of at least 900 enlistees.

The computer program LOGIST (Wood, Wingersky, & Lord, 1976) was
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Table 1
Calibration of Arithmetic Reasoning Items
in the Air Force Population

(a) Test PE7701

Items
Examinees K= 61 K = 65
N = 842 PE7701 (lst half) (not reached)
N = 914 (not reached) PE7701 (2nd half)
N = 155 PE7701 (lst half) PE7701 (2nd half)
Total = 1,911 N = 997 N = 1,069
(b) Test PE7702
Items
Examinees K = 62 K = 60
’ N = 878 PE7702 (lst half) (not reached)
N = 847 (not reached) PE7702 (2nd half)
N =129 PE7702 (1st half) PE7702 (2nd half)
Total = 1,854 N = 1,007 N = 976

used to estimate item parameters for the AR data. Several computer sim-

ulation studies have demonstrated that LOGIST provides efficient esti-

mates of the parameters of the three-parameter logistic model (Lord, ‘
1975b; Ree, 1979; Swaminathan & Gifford, 1980; Sympson, 1977a). '

LOGIST allows the user to code item responses as "correct, incor-
rect,” "omitted,” and "not reached.” Omitted responses (omits) are not
merely treated as incorrect by LOGIST. Rather, omits influence a modi-
fied likelihood function that is maximized by the program in the process
of estimating person ablilitles and item parameters. Lord (1974) has
shown that use of this modified likelihood function gives ability esti-
mates that converge, as test length increases, to the maximum likelihood
estimates that would be obtained if omitted responses were replaced by
random responses. Lord also showed that this method of estimation pro-
vides ability estimates that have smaller asymptotic variance about an
examinee's true level of ability than would be obtained if omits were
actually replaced by random responses. !

LOGIST ignores responses coded as "not reached,” no matter where
they appear in the response vector. This allows construction of data
files such as those represented in Table 1. For individuals taking only
the second half of PE7701 or PE7702, the first 61 or 62 positions of
their constructed response vectors were coded "not reached.” In addi-
tion, items in the second half of the test that followed the last item
attempted were also coded "not reached.” For individuals taking only b
the first half of PE7701 or PE7702, all items after the last item at-
tempted in the first half were coded "not reached.”




The small group of individuals that took both halves of PE. 701
served to link together the two larger groups that were exposed 1> only
half of that test. In calibrating PE7701, LOGIST transformed the abili-
ty estimates (§) for all the examinees so that the mean and standard
deviation of § were approximately zero and one, respectively. This au-
tomatically defined the origin and unit of measurement for the § scale
and, thus, the metric in which the item parameters a and b were ex-
pressed. The same process was followed in a separate computer run for
calibrating the items in PE7702.

Since the available data did not include any individuals who took
all or part of both PE7701 and PE7702, there was no way to be certain
that the estimated IRT discrimination and difficulty parameters obtained
in the two separate LOGIST runs were expressed in terms of a common met- i
i ric. However, if it is assumed that the group of 1911 individuals who
: took all or part of PE7701 was a random sample from the same population
as the group of 1854 individuals who took all or part of PE7702, then
the metrics established in the two calibrations can be expected to dif-~
fer by only small amounts arising through sampling error with respect to
the mean and standard deviation of 6 (true ability) in the two samples.
For example, with a sample size of N = 1900 in each calibration group
and a 0 standard deviation of .95 in the population, the 8 means in the
two groups will differ by less than .051 in approximately 90% of such
pairs of samples. Similarly, the standard deviations of 6 will differ
by less than .035 in approximately 90Z% of such pairs of samples. 1In
view of these considerations, the item parameters obtained in the two
separate AR calibrations were treated as if they had been expressed in 1
terms of the same metric.

Following calibration of the 248 usable items in PE7701 and PE7702, 1
two more items were eliminated from the pool. One of these was elimi- 4
nated because its estimated discrimination parameter was below an arbi- !
trarily selected cut-off value (a = .25), while the other was eliminated ﬂ
when it was discovered that the item had been miskeyed in the original

answer key for its test booklet. Thus, a total of 246 items were in-~
cluded in the AR item pool used in this research.

Table 2 provides information about the distributions of estimated
item discrimination (a), difficulty (b), and lower asymptote (c) parame-
ters in the final AR item pool. Items with a < .25 were not included. 7
An upper limit of 2.00 was imposed on the estimated a parameters by LO-
GIST; eight items had discrimination parameters at this upper limit. !
Ninety percent of the item difficulty parameters fell between -1.533 and f
1.876. A large number (166) of the c parameters were set to either .185
or .195 by LOGIST. These default values were calculated by LOGIST in
the PE7701 and PE7702 calibration runs and assigned to items found to be
too easy to allow accurate estimation of their lower asymptote parame-
ters.

The Fearson product-moment correlation between the a and b parame-
ters in the AR ftem pool was .493. This indication of a “significant
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Table 2
Centile Points of the Distributions of Estimated
Item Parameters in the AR and WK Item Pools

AR WK

Centile a b c a b c
Minimum 252 -4.,159 .027 .251 -6.150 024
5% 445 -1.533 .120 .389 -3.663 .083
10% 513 -1.274 .140 472 -2.769 .110
207 633 -.626 .185 570 -2.007 .130
30% 123 -.220 .185 .673 -1.394 .150
407% .802 .107 .185 .785 ~.866 .150
50% 929 .338 .195 .894 -.376 .155
60% 1.011 .631 195 1.033 .136 .155
70% 1.118 .945 .195 1.132 .607 .155
80% 1.277 1.210 .195 1.250 1.640 .155
907% 1.491 1.502 .200 1.496 2.366 .195
95% 1.773 1.876 .233 1.837 2.984 .204
Maximum 2.000 2.594 .300 2.000 5.223 .316

positive relationship batween the estimated item discrimianation and dif-
ficulty parameters is consistent with results observed in other empiri-
cal item calibrations using LOGIST (Lord, 1975a). Lord (1975a) also
reported the results of a LOGIST calibration using artificial data from
simulated items. The items had a wide range of b values and had a val-
ues that were not systematically related to the level of item difficul-
ty. The estimated a and b values obtained in the calibration were vir-
tually unrelated. This suggests that the tendency for empirical a and b
estimater to covary is unot a result of some artifact in the LOGIST esti-
mation procedure.

Word Knowledge

The WK item pool was composed of five-alternative multiple-choice
WK items. Each item required the examinee to identify the one word
among the five response alternatives which had a meaning that was most
similar to the meaning of the item's stem word.

A total of 200 WK items were obtained from AFHRL. These items had
previously been assembled into a single test booklet and administered to
1570 Air Force enlistees during their basic military tralning. Seven-
teen of these items were not included in the calibration of WK items for
this research. These 17 items were dropped for a variety >f reasons,
including typographical errors present in an item at the time the cali-
bration data were gathered, a negative item—total biserial correlation
obtained in a previous AFHRL analysis of the calibration dara, and the
presence of two responses that could be defended as correct.

No examinee attempted fewer than 50 WK items, and no examinee an-—
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swered correctly all the items he/she attempted; therefore data for all
1570 enlistees were retained for the WK item calibration. Because some
examinees omitted or did not reach some items, sample sizes ranged from
1516 to 1535 individuals for each WK item calibrated. After LOGIST was
used to calibrate the 183 usable AFHRL items, 15 of these were eliminat-
ed because their discrimination parameters were below .25. This left
168 items in the WK pool. Because a larger pool was desired, additional
items were sought.

Expanding the WK item pool. 1In order to increase the size of the
WK item pool, 120 five-alternative, multiple-choice WK items that had
previously appeared in four different forms of the School and College
Ability Tests (SCAT--Educational Testing Service, 1958) were utilized.
Seven of these items were not used because thelr stem words duplicated
stem words in the AFHRL WK item set. This left 113 usable SCAT items.

IRT parameters for the four SCAT forms had previously been estimat-
ed at Educational Testing Service (ETS) using data obtained from 1700,
2449, 2957, and 2998 individuals, respectively. Because some examinees
omitted or did not reach various items, the actual number of responses #
available for calibrating each item in a given SCAT form was somewhat
less than the number of available test records.

Since the LOGIST calibrations of the SCAT items at ETS had utilized
samples of high-school students, the metric on which the SCAT a and b
parameters were expressed was different from the metric of the AFHRL
item parameters. To transform the ETS difficulty and discrimination
parameters to the Alr Force enlistee ability metric, a special test
booklet was created and administered to a new sample of Air Force en-
listees.

Sixty of the AFHRL WK items calibrated for this research were used

as the odd-numbered items in the booklet. Sixty of the SCAT items pre- j
viously calibrated at ETS were used as the even—numbered items in the

booklet. Items selected for this "linking"” test were chosen to span the e
entire range of available item difficulties. At each level of difficul-

ty, the most discriminating AFHRL and ETS items were used.

T

{ Copies of the linking test were forwarded to AFHRL and the test was {

' administered to 514 Air Force enlistees undergoing basic military train- '
ing at Lackland AFB. Maximum likelihood ability estimates for each ex-
aminee were then generated using the odd and even halves of this test.
At this point, it was discovered that two of the items included in the
booklet were among the seven SCAT items that duplicated AFHRL item
stems; consequently, the two maximum likelihood ability estimates com-
puted for each person were based on 58 odd-numbered items and 58 even-
numbered items.

After eliminating two individuals whose ability estimates did not ‘
converge within the interval between -5.0 and +5.0, and one “"outlier”
with an ability estimate of 6 ¥ -4.9 on the SCAT ability scale, summary
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statistics were computed for the two sets of 511 ability estimates. The
mean 8 from the odd-numbered (AFHRL) items was -.022. The standard de-
viation of these § values was 1.027. These values suggest that the new
sample of enlistees could be viewed as coming from the same population
as the group of 1570 enlistees used for calibrating the AFHRL WK items.
The mean and standard deviation of § from the even-numbered (SCAT) items
were .478 and .710, respectively. The difference (.500) between the
SCAT mean and the mean ability estimate obtained using the AFHRL items
indicated that the average level of ability in the original SCAT high-
school samples would be about .5 unit (on the Air Force enlistee ability
scale) below the mean ability of Air Force enlistees. Dividing the
standard deviation obtained using the AFHRL items (1.027) by the stan-
dard deviation of the & from the SCAT items (.710) indicated that the
standard deviation of each SCAT calibration sample would be about 1.45
on the Air Force enlistee ability scale. Thus, as a group, the Air
Force enlistee population appeared to have a higher average level of
ability, but a more restricted range, than did the SCAT high-school cal-
ibration samples.

When the assumptions of IRT are met, ability estimates obtained
from two different sets of items calibrated in two different populations
will differ by a linear transformation plus a component due to errors in
estimating 6 with item sets of finite length (Lord & Novick, 1968, pp.
379-381). Evidence for the applicability of IRT to the AFHRL and SCAT
WK items used in this research was found in the bivariate scatterplot of
the 511 "odd” and "even" ability estimates. The observed regression of
either ability estimate on the other was clearly linear, and the Pearson
product-moment correlation between the two sets of ability estimates was
.889.

If a person's true ability on the Air Force enlistee ability metric
is designated as O, and that same ability expressed on the SCAT -~alibra-
tion sample metric as eS, the relationship between GA and eS is

= F 0
E),—kleA+k2 y (2]

S

where k; and k, are parameters of the linear transformation. Given this
relationship, the expectation of es can be expressed as

- 3
E(GS) = klE(BA) + k2 . [3]

Similarly, the variance of Hg is

= 2
v(es) = (k) V(eA) . (41
Thus
k, = VV(GS)/V(BA) ,
and




= - 6
k, = E(6) - k E(B,) . (6]

Since E(@IG) = O agymptotically (i.e., the maximum likelihood esti-
mator is unbiased for tests of sufficient length) and the covariance
between 0 and (6-0) 1s zero asymptotically, it may be concluded that
E(8)=E(9) and

V() = v(8) + E[V(H]|8)] (7]

for tests of sufficient length (Samejima, 1977, pp. 164-166). Also, for
tests of sufficient length, E[V(@le)] can be estimated in large samples

with the quantity M[1/I(§)], which is the sample mean of the reciprocal

values of the test information function (Birnbaum, 1968, p. 454) evalu-

ated at each examinee's § {Sympson, 1980).

Thus, an estimate of k,, corrected for unreliability of the odd and
even halves of the linking test, was calculated using

est (kl)

- % v (B 8 s
est v(es)] vy - M[l/I(eS)]] i "

_ESt V(eA) L—V('éA) - M[l/I(@A)]
e

[ (.710)% - .040]
(1.0271)2 - .109)

= .701,

where .040 and .109 were the estimates of E[V(ésles)] and E[V(éA[GA)]
computed from 511 reciprocal values of each half's test information
function. Similarly, k, was estimated using

est (kz) = est E(@S) - [est(kl) est E(GA)] [9]

M(Bg) - lest (k) M(8,)]

(.478) = [(.701) (-.022)1= .494

Since item difficulty (b) and ability (g) are on the same metric,
the function for transforming item difficulty on the SCAT metric (bs) to
the Air Force metric (bA) is

- bS - est(kz) o)
A est(kl)
Item discrimination is transformed with a, = est(k,)a. (Lord & Novick,

1968, p. 38l). These transformations were applied to the a and b param-
eters of all 113 SCAT items in order to have parameters that were ex-
pressed on the same metric as the AFHRL items. After parameter trans-
formation, one SCAT item was found to have a discrimination value below
.25 and was dropped from the WK pool. Thus, the final WK item pool for
the adaptive tests used in this research was comprised of 168 AFHRL
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items and 112 SCAT items, a total of 280 items.

Table 2 also provides information about the distributions of a, b,
and c parameters in the final WK item pool. Items with a < .25 were
excluded from the pool. Thirteen items had a equal to the upper bound
of 2.0. Ninety percent of the b parameters were between -3.663 and
2.984. This indicates that the WK item pool was suitable for testing
individuals with a wider range of abilities than the AR pool (in which
90% of the b parameters fell between -1.533 and 1.876). The item re-
sponse function (IRF) c¢ parameters for 103 out of 280 items were set to
the default value of .155 calculated by LOGIST. Another 43 Cc parameters
were estimated to be .150. The remaining c parameters ranged from .024
to «316. The Pearson product-moment correlation between the a and b
parameters in the WK item pool was .488, a value quite close to the cor-
relation observed in the AR item pool.

ASVAB Calibrations

The conventional (non-adaptive) tests administered in this research
were Parts 4 and 5 (WK and AR) of Form 7 of the Armed Services Vocation-
al Aptitude Battery (ASVAB). Part 4 of ASVAB-7 contained 30 four-alter-
native multiple-choice WK items of the same type used in the adaptive-
test WK item pool. Part 5 of ASVAB-7 contained 20 four-alternative mul-
tiple-choice AR items of the same type used in the adaptive-test AR item
pocl. These two ASVAB subtests were administered on CRTs along with the
experimental adaptive tests. In order to investigate the possible ef-
fects of test scoring method on criterion-related validity, each ASVAB
subtest was scored three ways. In addition to the traditional number-
correct score that is commonly used with the ASVAB, both Bayesian and
maximum likelihood IRT ability estimates were generated for each examin-
ee on each ASVAB test.

In order to compute the IRT ability estimates, IRT item parameters
were needed. Data were obtained for 2000 Air Force enlistees tested
with ASVAB-7 during their basic military training. These data were used
in two LOGIST calibration runs in order to generate parameter estimates
for the AR and WK ASVAB subtests.

Arithmetic Reasoning. Of 2000 available AR subtest records, 146
were eliminated because the individual either attempted fewer than 10
questions or answered all attempted questions correctly. All 1854 re-
maining cases attempted the first 10 AR subtest questions, but because
some examinees either omitted or did not reach many of the later items,
fewer and fewer responses were available for these items. By Item 20,
1572 responses were available. This indicates that the ASVAB-7 AR sub-
test was somewhat speeded and, as a result, not entirely suitable for
calibration with IRT methods (Lord & Novick, 1968, p. 384). Neverthe-
less, in order to address the question of effects of scoring method on
criterion-related validity, the LOGIST calibration of this subtest was
undertaken. The resulting IRT parameters are shown in columns 2 through
4 of Table 3.
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Table 3
Item Parameter Estimates for Items
in ASVAB-7 AR and WK Subtests

Item AR WK
Number a b c a b <
1 .165 -10.481 «250 .741 -4.338 «245
2 .281 -4.037 .250 <494 -4.500 «245
: 3 .381 -3.527 .250 .735 -2.972 «245
: 4 .510 -2.727 «250 .186 -7.556 «245
E 5 .768 -.983 .250 .630 -2.458 0245
6 642 -1.876 <250 .844 -1.881 «245
7 1.120 -.507 «250 606 -2.913 «245
8 «515 -1.464 «250 .530 -2.096 «245
9 1.142 -.047 «248 679 -2.767 245
10 .955 -.089 .250 567 -1.881 «245
11 440 -.961 .250 697 -1.465 «245
12 .569 -.590 .250 1.241 -1.235 «245
13 .675 .380 .250 .520 -2.170 #245
14 2.000 .197 .250 .888 ~-1.327 <245
15 .904 .663 .250 1.054 -.870 <245
16 2.000 .352 .183 1.280 ~-.677 «245
17 644 .917 .108 1.016 -.671 <245
18 2.000 .522 .293 .753 -1.364 .245
19 .300 ~3.325 .250 .639 -.678 .245 :
20 .905 -.845  .250 .836 ~.590 2245
21 .582 -.490 «245 .
22 .917 .049 .245
23 2.000 -.127 <245 i
24 2.000 .541 «245
25 1.664 .080 .-168
26 .544 -.211 «245
27 332 .573 .245
28 -959 .748 <245
29 2.000 .907 <240
30 2.000 1.073 £241
Median .660 -.718 .250 747 -1.053 .245
The AR item parameters shown in Table 3 indicate that this uSVAB
subtest was rather easy for the Alr Force enlistee population. In fact,
the first three ftems and Item 19 were so easy that {t is doubtful

whether LOGIST could generate accurate parametet estimates for these i
items with data obtalned from this populatfon. tor items like these,

LOGIST ts faced with the task of extrapolating virtually the entire IRF
from a short, nearly flat, segment of the upper tall of the IRF. Very i
small changes in the data avallable {n the upper tail can lead to dra-
mat {c changes {n the numerical values of the a, b, and ¢ parameters ob- i\
tatned for such {tems. However, such changes will have very little ef-
fect on the fit of the estimated IRF to the avallable calibration data.
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Moreover, the obtained parameters can safely be used with future examin-
ees if their true ability levels fall within the range of the original
calibration sample.

Word Knowledge. In the calibration of ASVAB WK items, 135 cases
were eliminated because all attempted items were correct. The remaining
1865 cases attempted items 1 through 24. After item 24, the number of
available responses declined slowly to a low of 1836 responses at Item
30. This indicates that the ASVAB-7 WK subtest was only very slightly
speeded. LOGIST parameter estimates for this subtest are given in col-
umns 5 through 7 of Table 3.

The WK parameters in Table 3 indicate that this subtest was also
rather easy for the Air Force enlistee population. Four or five of the
items were so easy that their parameters were probably not well estimat-
ed. 1In both this subtest and the AR subtest, most of the items were
easy enough to prevent LOGIST from estimating ¢ parameters for these
items. The default ¢ value computed by LOGIST in each calibration run
was assigned to such items. Since the data used for calibrating the
ASVAB subtests were obtained from a large group of individuals from the
same population that was sampled for calibration of the AFHRL items in
the adaptive test item pools, it n .y be assumed that the ASVAB item pa-
rameters reported here are on approximatelv the same AR and WK metrics
as are the adaptive test items.

Testing Strategies and Scoring Methods

Two different adaptive testing strategles and three methods of
scoring the ASVAB subftests were examined in this research. While the
adaptive tests were each scored in ouliy one way, in the following dis-
cussion the adaptive tests and the various ASVAB scoring approaches will
each be referred to as a testing-strategy/scoring-method (TSSM). This
usage is consistent with the fact that the strategy adopted for item
selection and the method used for scoring an adaptive test are at least
partly independent (Sympson, 1975).

Adaptive Tests

Bayesian. One of the adaptive testing strategies investigated was
the Bayesian strategy proposed by Owen (1969, 1975) and studied by Jen-
sema (1977), McBride (1977), and Sympson (1977b), among others. In thic
procedure, it is assumed that the distribution of 9 in the population to
be tested is a normal distribution with mean and variance that can be
specified a priori. 1In Owen's original development, it was also assumed
that the IRF for the correct response on each dichotomously scored item
in the item pool conformed to a three-parameter normal-ogive model. The
close similarity of the normal-ogive and logistic response models, when
the tatter includes the scaling constant 1.7 (Birnbaum, 1968, p.399),
allows the use of Owen's procedure with items calibrated under the
three-parameter logistic model.
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Owen derived equations for computing the mean and variance of the
posterior distribution of 8, given knowledge of the mean and variance of
the normal prior distributlon and the response (correct or incorrect) to
a single {tem with known parameters. While the posterior distribution
obtained is not itself a normal distribution, Owen proposed approximat-
ing the actual posterior distribution with a normal distribution having
the same mean and variance. Given this approximation, the same equa-
tions can be used again to obtain the mean and variance of the posterior
distribution of 6, given the response to a second item with known param-
eters.

By continuing in this manner, a series of items can be chosen that
are adapted to the provisional estimates of 5 obtained during the test
(the means of the series of posterior distributions) and which are ap-
proximately optimal for minimizing the posterior variance of 8 at the
end of the test. If Up (m =0, 1, 2, ...) is defined as the mean of any
prior distribution in the series, and O; as the variance of that same
prior distribution, then M .4 and 0;+1, the mean and variance of the
resulting posterior distribution after the response to item mtl with
parameters ag, bg, and cg, are giveu by the following equatiahs:

If item m+l is answered correctly,

m 2(D)
= = + - , 1 A [11} :
Mo E(8|1) M Q cg) =+ 0;
g |
and
1-c¢ (1 - ¢ )o(D)
2 _ _ 2 _ g ¢(D) I3 -
A v(ell) = o’ $1 1 A = piy. 21
1+ a7 o2
m
If item m+l is answered incorrectly, 9
52 ¢ :
. _ _ m_ ¢$(D) [13]
Mol T E(8[0) = M 1, 52 »(D)
PYIRa) ‘
a n .
g !
and i
P
! 4(D) S0y * P ‘5
1 2 = = 2 - ‘1
3, Oprl v(elo) =o; {1 1 (D) . [14] 3
1+ §
at o
[ g m
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In these equations, ¢$(D) 1s the standard normal density function, %(D)
is the standard normal distribution function,

b -
D = s 151
1 2
az ¥ %
8

and A = cg * [(1 - ¢,) $(-D)] is the marginal probability of a correct
response, given the %tem parameters and a normal prior distributi.n for
9.

In order to select item mtl in Owen's procedure, the computer
searches the item pool to identify the as-yet~unadministered item that
minimizes

E [v(elug)] = A [v(GIuP =11+ Q- A)[V(elug =01 , [16]
‘s

the expectation of the posterior variance of O given the response u, to
item g. Once the desired item is identified, it is administered an

Hm41 and Om+1 are computed.

The Owen Bayesian (BAYES) strategy was used to administer a 25-item
AR rest and a 35-~item WK test. However, for many of the subsequent data
analyses, the mean of the Bayesian posterior O distribution after either
20 AR 1tems or 30 WK items was used as the BAYES ability estimate.
These test lengths were selected in order to insure comparability of
results to the 20-item and 30-item ASVAB AR and WK subtests.

Stratified maximum information. The other adaptive testing strate~
gy used was a stratified maximum information (STMI) strategy. Samejima
(1969, p.75) proposed a strategy in which a provisional maximum likeli-
hood estimate of 9 would be calculated after each item was administered.
At each stage in the test, the next item selected for administration
would be the previously unadministered item in the pool which had the
largest value of the item information function (Birnbaum, 1968, p. 454)
at the current estimated ability level. Item information is defined by

[P’ (0]’

1) = stoale

s (171

where P(9) is the assumed IRF (e.g., Equation 1),

Q(8) is 1 - P(8),
and P'(g) is the first derivative of P(8) evaluated at 9.

During adaptive testing, § would be substituted for 0 in Equation 17.
Similar to Owen's procedure, Samejima's proposed strategy would require
a complete search of the item pool at each stage of the test In order to
identify the optimal item to administer.

- 14 -
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To avoid time-consuming pool searches, the STML strategy "pre-—
stratifies” the item pool in terms of item information values at select-
ed levels of 6. For this research, the item information functions of
all the items in each adaptive test item pool (AR or WK) were evaluated
at 8 values ranging from -3.00 to 3.00 in increments of .25. At each
selected level of 6, the items in the pool were rank ordered in terms of
their information values at that level, and the item numbers of the k =
25 (for the AR pool) or k = 35 (for the WK pool) most informative items
were recorded in the order of their information values.

For each item type (AR or WK), the foregoing procedure resulted in
25 ordered vectors of k item numbers, one vector associated with each
selected 6 level. These vectors were formed into two k-by-25 arrays
that were stored in computer memory for rapid access during the adminis-
tration of the STMI adaptive tests. After each item in a test was ad-
ministered, a maximum likelihood estimate of ability, &, was calculated
using the Fisher scoring algorithm (Kendall & Stuart, 1973, p.51).
Then, the item number of the most informative unadministered item in the
array column corresponding to the 6 value closest to 8 was extracted and
that item was administered next. Since a given item can be among the k
most informative items in an item pool at different levels of 6, a sin-
gle item often appeared in more than one column of a k-by-25 array of
item numbers. As soon as an ltem was administered, it was removed from
all the array columns in which it appeared.

The STMI strategy closely approximates Samejima's proposed strategy
over the range of 6 in which the item pool has been prestratified. If
computer memory provides sufficlient storage capacity, the pool can be
stratified over a wider range of 6 and/or the distance between 0 levels
at which the pool is stratified can be decreased.

One difficulty with maximum likelihood ability estimation in the
context of IRT is that the likelihood function after a single response,
or after a series of responses that are all correct or all incorrect,
has a maximum at either positive or negative infinity (depending on
whether the responses are correct or incorrect, respectively). Thus,
unless controls are built into the estimation procedure, the computer
will attempt to find this maximum by executing an infinite number of
steps along the f continuum. This same problem can arise with certain
item sets and response vectors even when there is a mixture of correct
and incorrect responses.

Thus, the following controls were imposed on the numerical proce-
dure (the Fisher scoring algorithm) used to find the maximum of each
likelihood function. First, the number of iterations the procedure was
allowed to make was restricted to the truncated value of (i+1)/2, where
1 was the number of items administered up to a given point—ln the test.
Consequently, as the test progressed, the number of iterations allowed
after items 1, 2, 3, 4, 5, ceey k, was 1, 1, 2, 2, 3, ..., (ktl)/2.
Second, the 1argcst change in § allowed in a single iteration was 1.0.
Thus, after administering any given item, the largest possible change in
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§ was 1.0 times the number of iterations allowed. Third, whenever the
change in 6 from one iteration to the next was less than .001, the esti-
mate was considered to have "converged.” This terminated the numerical
iterations and the last value of § was used as the provisional ability
estimate.

Finally, § was restricted within the interval from -5.00 to 5.00,
inclusive. If, during the numerical iterations, ) attempted to go out-
side this interval, it was set to the appropriate boundary value. If
the next iteration stepped 6 toward the interior of the bounded inter-
val, the iterations continued until convergence was achieved or the max-
imum number of iterations allowed at that stage of the test was reached.
However, if the next iteration attempted to step O outside the interval
a second time, & was kept at its assigned boundary value and the itera-
tions were terminated. The boundary value was then used as the provi-
sional ability estimate.

As in the case of BAYES, the STMI strategy was used to administer a
25-item AR test and a 35-item WK test. As before, the values of O after
20 AR items and 30 WK items were used in most analyses in order to in-
sure comparability with the ASVAB subtests.

ASVAB

Bayesian scoring. Since the ASVAB subtests were not adaptive
tests, they were not scored at the time of test administration. In-
stead, item responses were recorded and the responses were scored three
different ways after all the data for this study had been collected.
One method of scoring the ASVAB subtests was to generate Bayesian esti-
mates of O using Owen's equations (Equations 11 to 15). This set of
ability estimates will be referred to as the ASVAB/B TSSM.

Scoring of the ASVAB response vectors with Owen's equations was
accomplished by processing the items sequentially, as though they were
part of an adaptive test. The items were processed in the same order
that they appear in ASVAB-7, which was also the order of administration
used in this research. The order in which items are processed by Owen's
equations is a necessary consideration because the obtained ability es-
timate will be slightly different if different item orders are used.
This characteristic of Owen's procedure is a result of the approxima-
tions involved in the method (Sympson, 1977b).

Maximum likelihood scoring. The second method used for scoring the
ASVAB subtests was to generate maximum likelihood ability estimates us-
ing the numerical procedure described above in connection with the STMI
strategy. This will be referred to as the ASVAB/M TSSM. In this case,
it was not necessary to process the ASVAB items in a serial fashion as
was done with Owen's equations. All 20 AR items or all 30 WK items were
treated simultaneously. For each subtest, a single ability estimate, é,
based on all the items was generated. The numerical procedure was al-
lowed a maximum of 25 iterations in this case.
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Number-correct scoring. The simple number-correct score was also
calculated for each ASVAB response vector. This will be referred to as
the ASVAB/N TSSM. There were two principal differences between standard
ASVAB testing conditions and the conditions established in this re-
search. First, the ASVAB items were administered via CRT rather than in
a printed test booklet. This was done to equalize any possible effects
of the medium for item administration (Sympson, 1975). This type of
effect has been observed in several studies of computer-administered
conventional tests (e.g., Sachar & Fletcher, 1978, and references cited
therein). Second, the ASVAB subtests, like the adaptive tests, were
untimed. As mentioned earlier, there was evidence in the item calibra-
tion data that the ASVAB AR subtest 1s normally given with a time limit
that prevents a significant number of examinees from finishing it. 1In
this research, all examinees paced themselves and attempted all items
administered. No omitting was allowed.

Adaptive Test Entry Procedures

Fixed Entry

In a conventional (non-adaptive) test, such as the ASVAB subtests
used in this research, all examinees take the same items. Thus, the
choice of the first item to administer is not a weighty consideration.
In adaptive tests, on the other hand, the choice of the first item to
administer is usually guided by psychometric considerations. Often, the
first item is chosen to be of suitable difficulty for the “average” in-
dividual in the examinee population. 1In view of the scaling established
by LOGIST during item calibration, a reasonable approach in the BAYES
strategy would be to set H, = 0.0, Gg = 1.0, and then to choose the item
that minimizes the expectation of the posterior variance. For STMI, a
reasonable choice for the first item would be the item which has maximum
item informatfon at 6 = 0.0. Both of these approaches assume that the
individuals to be tested are drawn from the population previously sam—
pled for item calibration and that no additfonal information related to
8 is available about an individual.

In this study it was desired that the adaptive tests function in a
manner that would make comparisons with the ASVAB subtests most equita-
ble. Since the ASVAB is designed for use in the type of population en-
countered at Armed Forces Entrance and Examining Stations (AFEES), it
was decided that the adaptive tests should select an initial item that
would be appropriate for individuals near the mean of the AFEES popula-
tion. After this, each adaptive test was allowed to adapt the difficul-
ty of the items to the apparent ability level of each examinee.

Estimating the ability distributions. In order to identify appro-
priate init{al items for the AFEES population, estimates of the mean and
standard deviation of AR and WK abilities in this population were need-
ed. Testing of a new sample of individuals from this population was not
possible, so a procedure that used existing test data was implemented.
Lord and Novick (1968, pp. 387-391) discuss the relationship between the
distribution of ability, 6, in a population and the distribution of
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“"true” number- (or proportion-) correct scores on a conventional test
for the same population. They show that the non-linear function which
transforms 0 into true score on a particular test is given by the test
characteristic curve (TCC), which is the sum (or average) of the IRFs
for correct responses to the items in the test.

Since the relationship between 9 and true score is one-to-one in
both directions, not only can the TCC be used to convert 6 values to
true scores, it can also be used to convert true scores to 8 values.
Thus, if the distribution of true scores on any given test in a selected
population is known, the underlying O distribution for the population
can be generated. Note that while the true-score distribution and the
TCC are functions of the particular test involved, the resulting 9 dis-
tribution that is generated is independent of the test used.

In order to generate estimated AR and WK O distributions for the
AFEES population, it was first necessary to obtain an estimated popula-
tion true-score distribution for an AR and a WK conventional test and to
estimate the TCC for each test. Since estimated IRF parameters for sub-
tests AR and WK of ASVAB-7 were already available, estimating the TCC
for each of these tests was simply a matter of summing the estimated
IRFs for correct responses in each test. The estimated IRFs were gener-
ated using the parameters displayed in Table 3.

The estimation of true-score distributions is a complex problem,
and only one thorough treatment of the topic has appeared in the psycho-
metric literature (Lord, 1969). Since Lord's procedure for estimating
true-score distributions was not available for this research, a simple
approximate method was used. First, observed-score distributions from
three large AFEES samples (N = 1479, 1387, and 1422) that had taken
ASVAB-7 AR and WK subtests were located (Fruchter & Ree, 1977, Tables
A-4 and A-5). For each subtest, the three number-correct-score distri-
butions were combined to form an observed-score distribution based on
4308 cases. The mean and standard deviation of the resulting AR distri-
bution were 10.84 and 4.17, respectively. The mean and standard devia-
tion of the WK distribution were 17.03 and 6.92.

Under classical test theory, the linear regression estimate of a
true score, given an observed score, is

= - 18
[(x0 M(XO)]pxx + M(XO) . 18]

where X/ is the estimated true score, X is the observed score, M(Xpy) is
the mean of the observed scores, and Pxy is the test reliability coeffi-
cient (Lord & Novick, 1968, p. 65). The standard deviation of estimated
true scores computed in this manner, S(XT), is equal to DXXS(X ), where
S(X ) is the standard deviation of observed scores. S(X ) is smaller
than the true-score standard deviation, which equals /—-‘S(XO) (Lord &
Novick, 1968, p. 59). However, XT values, defined by

Rp = (X, - MXp)] MK (19

Pxx

- 18 -




R

while not least-squares estimates of X, correlate perfectly with X{ and
have a standard deviation equal to that of true scores.

For the purposes of this research, each observed-score-interval
boundary (x0 + 1/2) was regressed toward the observed-score mean by in-
serting the boundary value in place of X5, and an estimate of Pyy, in
the formula given above for X . The estimates of Pyy used in this equa-
tion for the two ASVAB subtests were KR-20 coefficients (Lord & Novick,
1968, p. 91) previously calcutated in a stratified random sample of 460
AFEES applicants (Jensen, Massey, & Valentine, 1976, Table 5). These
coefficients were .84 and .91 for AR and WK, respectively. The re-
gressed boundary values were then projected onto the 0 metric via the
TCC. The examinees falling within each estimated true-score interval
were then assigned to the corresponding f{projected) interval on the 8
metric. A graphical representation of this procedure for the ASVAB AR
subtest is shown in Figure 1.

As shown in Figure 1, the lowest 0 interval 1s unbounded at the
left and the highest 6§ interval is unbounded at the right. This pre-
vents computation of the central moments of the estimated 6 distribu-
tion. In order to approximate the mean and standard deviation of 6, the
16th, 50th, and 84th centiles of the estimated AR and WK 6 distributions
were obtained by linear interpolation. Thcse centile points are shown
in Figure 1 for the AR distribution.

The 16th, 50th, and 84th centiles were selected because the BAYES
procedure assumes that the distribution of © is normal. Unfortunately,
as indicated in Figure 1 for AR abilities, the estimated 0 distributions
of both abilities were clearly negatively skewed, which caused the dis-
tance between 8,¢ and 0;, to greatly exceed the distance between 6, and
Bq,+ It seems likely that part, though not all, of this negative skew
was due to the fact that the IRF lower asymptote parameters (cg) could
not be accurately estimated with the available calibration data.

In general, that portion of a test characteristic curve (TCC) which
lies below about 6 = -2.50 will not be well estimated with parameters
generated by LOGIST, due to the paucity of data at extreme 0§ levels.

The fact that so many estimated true-score intervals fell below the low-
er asymptote of the estimated TCC of each subtest, and the fact that the
average well-estimated c, value for r-alternative multiple~choice items
is usually lower than 1/r (Lord, 1974, p. 252), suggest that the lower
portion of the estimated TCCs obtained in this research were elevated
above the true TCCs. If this conjecture is correct, then the true AR
and WK 6,, values are somewhat higher than the values obtained here.

Use of more accurate 0, values would reduce the distance from 6,, to
8., somewhat, but the reduced distance would probably still be greater
than the distance from 65, to 9,,.

Fixed-entry ability estimates. Each examinee was administered a
total of six tests. The first three tests were either AR or WK tests,
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Figure 1
Transformation of an Approximate ASVAB-7 Arithmetic
Reasoning True-Score Distribution into a
Theta Distribution via the Test Characteristic Curve
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depending on the "order condition" to which an examinee was assigned.
The last three tests followed a 5~minute break.

The first three tests a person received were given in what will be
referred to as the fixed-entry (FE) condition. In each of these tests,
all examinees were administered the same initial item. The choice of an
initial item for a test depended on the item type involved and the
strategy. For example, for the BAYES AR adaptive test, u,, the mean of
the initial prior distribution, was set equal to -1.30. This value was
chosen because the estimated 50th centile point of the AFEES AR ability
distribution was at § = -1.29. The standard deviation of the BAYES ini-
tial prior distribution, O, Was set equal to 2.15 because the mean of

the estimated 6, to 65, and 6, to 0,, distances for the AFEES AR abil-
ity distribution was 2.16.
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The initial AR prior standard deviation used in this study probably
overestimated the actual population value, since the observed 6,, to 6.,
distance was probably inflated. However, it was felt that the use of a
“diffuse" prior distribution would be less hazardous to the successful
functioning of the BAYES strategy than would an overly "precise™ prior
distribution. The rationale for this point of view can be seen in con-
sidering the limiting case where 0, is set equal to a value approaching
zero. In this case, no finite amount of data can cause the ability es-
timate to move away from Y,;, the initial prior mean (see Equations 11 to
15). Thus, all the ability estimates will be (approximately) equal to
U, at the end of such a test. The same tendency to restrict the ability
estimates to an excessively narrow range around I, will operate to vary-
ing degrees whenever O, 1s underestimated. This would, in most cases,
reduce the criterion-related validity of the BAYES strategy.

The initial item for the fixed—entry BAYES AR test was the item in
the AR pool that minimized the expectation of the posterior variance
given Hy = -1.30 and Oy = 2.15. The initial item for the fixed-entry
STMI AR adaptive test was the item for which I(§) was highest at 6 =
-1.25, since this level of § was closest to -1.29 among the 25 levels at
which the AR item pool had been prestratified.

For the estimated WK ability distribution, the obtained values of
8,¢, 854, and B4, were -4.30, -1.41, and .38, respectively. Thus, the
initial item for the fixed-entry BAYES WK test was that item in the WK
item pool that minimized the expectation of the posterior variance given
that the values of M, and O, were -1.40 and 2.35, respectively. Simi-
larly, the initial item for the fixed-entry STMI WK test was the item
for which I(9) was highest at 0 = -1.,50, since -1.50 was closer to -1l.41
than any of the other ability levels at which the WK item pool had been ;
prestratified. ﬁ

Variable Entry

A potential advantage of computerized adaptive testing is the pos-
sibility of selecting an initial test item that is tailored to the indi-
vidual. In order to do this, information about the examinee beyond
his/her group membership is needed. One possible source of such addi-
tional information is the examinee's performance on a previous test
whose scores are correlated with the ability to be estimated (e.g.,
Brown & Weiss, 1977). 1In this research, an individualized starting
point for each of the last two adaptive tests a person completed was
derived from the final ability estimate obtained in the first adaptive |
test of the same type (BAYES or STMI). i

Specifically, 1f an individual answered WK items in the first half
of the testing session, an initial linear regression estimate of the
person’s true AR ability level (8,y) was obtained from their estimated
WK ability level (éWK)' The initial AR estimate (O,gp) was then used to
select an appropriate first AR item. This was done separately for the
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BAYES and STMI adaptive tests. Thus, the adaptive tests given in the
second half of an individual's testing session can be described as hav-
ing been administered under variable-entry (VE) conditions. Of course,
each ASVAB subtest was administered under FE conditions, regardless of
which portion of the testing session the subtest appeared in.

In estimating S,p from §WK’ the linear regression equation may be
written as

$(6,.) S(6,,)
5 = __ AR | 3 - AR 6
91 = |°* ) Sk T EG,R) p* T E(O) (20]

where c* is the correlation between 9,p and QWK' For tests of suffi-
cient length, the value of 0% is approximately equal to p’/ WAR’ where
r* is the correlation between 9 and § K and p is the reliability of
& AR (Lord & Novick, 1968, p. 709 For maximum likelihood estimates of ©
obtained from tests of sufficient length, the value of S(OY ) is approx-
imately equal to S(9yg)//0Oyg, where Oy is the reliability of GWK
(Sympson, 1980). For Bayesian minimum—-quadratic-loss estimates of 0
obtained from tests of sufficient length, the value of S(QWK) is approx-

imately equal to S(awx)/b wk (Sympson, 1980).

E(r AR)’ E(OwK), S(QAR), and S(O K) were set to the values used as
prior means and standard deviations in the fixed-entry Bayesian tests.
An approximation to the unknown value of P’ was obtained by calculating
the weighted mean of three previously reported correlations between
number-correct scores on ASVAB-7 AR and WK subtests (Fruchter & Ree,
1977; Tables 4, 9, and 13). These empirical correlations were based on
1479, 1387, and 1442 cases. The obtained estimate of p’ was .527.

The estimates of (4p and Oy that were used were the same values
(.84 and .91) used earlier in connection with the creation of approxi-
mate true-score distributions for the ASVAB AR and WK subtests. Since
thegse reliability estimates were obtained from non-adaptive, number-

correct-gscored tests, they presumably underestimated the unknown reli-
ahilitlies of the adaptive AR and WK tests used In this study.

The procedure described above resulted in the following equations
for estimating ,p from fju:

for BAYES,

G = 950 - 53 121 x;

AR ;

for STMI, ;
B 5000, ) - 60 . [ $
AR WK
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In a similar manner, the following equations were obtained for estimat-
ing Oy from @AR:

for BAYES,
éWK = .66(8,p) - .54 [23)
for STMI,
B = -55(8,0) - .68 . (241

The appropriate pair of equations was used to calculate initial ability
estimates for starting each examinee's second BAYES and STMI tests.
Initial prior standard deviations for second BAYES tests were set equal
to the estimated standard error of estimate for predicting one ability
from estimates of the other. Specifically, for predicting eAR from BWK’

-8 = . - = . 25
S(Byp = 84p) = S(B, )1 - (p¥)* = 1.76 [25]
For predicting 6, . from éAR’

S(8 1 - (p*)% = 1.96 . [26]

wk ~ Owx? = SO

In Equations 20 to 26, the value used for P* was .527//.94 when estimat-
ing 6,p from By and .527/.91 when estimating Byx from 6,p-

Apparatus

Testing System Hardware

The computerized test delivery system created for this research
utilized a Hewlett-Packard 2100S microprogrammable computer with 32K
16-bit words of memory. This central processing unit (CPU) was connect-
ed to a Hewlett-Packard 7900A moving~head disc drive, a Texas Instru-
ments 733 KSR printing terminal, and four ADDS Regent 100 CRTs.

The 733 KSR terminal functioned as the test proctor's control con-
sole. This unit provided a hard-copy record of all communications be-
tween the proctor and the CPU. An important consideration in selecting
the control console was the requirement that the printer be virtually
gilent. This was necessary because the console would be located in the
same room as the examinees taking the experimental tests.

The ADDS CRTs were driven at 1200 BAUD (approximately 120 charac-
ters per second) and functioned as the delivery and response medium for

the six tests administered to each examinee. Communications transmitted
to the examinee from the CPU were displayed on a 12-inch-diagonal cath-
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ode-ray tube in white-on-black character mode using an 8-by-8 dot matrix
for each character. A maximum of 80 characters per line, on up to 24
lines, could be displayed at one time. Examinee responses were entered
on a standard teletypewriter (TTY) type keyboard. Examinees were able
to review each line of their input for errors and could "erase” the line
and re-enter it before "sending” it to the CPU.

Some of the AR items required slight modifications for CRT display.

For example, the correct response for one item in the AR item p- ol was
printed in the original test booklet (PE7701) as

300 - 90 .
7y, - 2%

This option was displayed on the CRT as

300 - 90 ,
(7 172) - (2 1/2)

since the small % symbol was not available on the CRTs. It was assumed
that these modifications did not alter the difficulty of the items.

Test Administration Software

Exclusive of the Real Time Executive (RTE) operating system provid-
ed by Hewlett-Packard, and certain special-purpose assembly-language
routines either obtained as part of a Hewlett-Packard program library or
written specifically for this research, the testing system implemented
for this study was written entirely in FORTRAN 1IV.

The testing system was made up of a series of self-contained pro-
grams and callable subroutines. Each self-contained program could
schedule one or more other programs for execution via appropriate in-
structions addressed to the RTE operating system. The programs served
to initialize each testing session, train each examinee in the use of
the CRT keyboard, collect biographical information (name and social se-
curity number), inftialize examinee data files, assign each examinee to
one of 12 "order conditions,” administer sample items and the six exper-
imental tests in the appropriate order, recognize and deal with invalid
examinee responses, keep track of time elapsed in a particular test and
examinee response times for each item taken, record the data from the
six experimental tests on the examinee data file, terminate testing,
debrief each examinee, and close the examinee data file.

System Checkout and Installation

After activation of the integrated hardware/software system, sever-—
al-hundred trial testing sessions were completed to verify the integrity
of the system. The majority of these testing sessions were completed by
staff members connected with this research, but in order to test the
system and the examinee instructions with naive respondents, approxi-
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mately 35 volunteers, students in an introductory psychology course,
were also tested.

During these "shake-down” sessions, a few instances in which the
testing system stopped functioning in the middle of a testing session
were noted. Extensive troubleshooting of the system hardware and soft-
. ware failed to reveal the reason for these failures. Since such occur-
rences were infrequent and the scheduled starting date for testing was
imminent, the system was placed in the field in its then current config-
uration. (During the subsequent period of experimental testing, system
failures of this type were experienced six times during 40 days of test-

ing.)

The system was transported to Chanute AFB and two individuals se-
lected by the Air Force were trained as test proctors by project staff.
The test proctors activated the testing system each morning, initiated
each examinee's testing session, kept a log of the day's testing activi-
ties, shut down the system at the end of each day, and periodically
changed the removable disc cartridge on which experimental data were
accumulating. After only one day of monitored testing activity, these
proctor functions were performed without on-site supervision from the
regearch staff.

Subjects

The Experimental Sample

The examinees in this research were 495 individuals enrolled in a
technical training course for Air Force Jet Engine Mechanics [Air Force
Skill Code (AFSC) 42632]. The examinee sample contained approximately
70% males and 30% females. Most major U.S. racial and ethnic groups H
were represented, though not necessarily in proportion to their numbers
in the general population. With few exceptions, the examinee sample was
concentrated in the age range from 18 to 23 years.

The Jet Engine Mechanic (JEM) training course lasted 11 weeks.
Each trainee was tested either within a few days before starting the
course or sometime during the course. Testing was completed between
June 15 and August 11, 1978. While participation in this study was vol-
untary, trainee participation was strongly encouraged by senlor enlisted
personnel at the JEM school. Virtually all JEM trainees that were en-
rolled at the time testing was started and all new trainees arriving
while testing was underway volunteered to participate in the study.

Cases Retained for Analyses

While 495 complete test records were obtained in this research, not
all were used in the various data analyses. Table 4 summarizes the num-
ber of cases remaining after the application of several criteria for
) case retention. In this table, the total examinee sample is broken down
into two groups: individuals who answered WK items during their first
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three tests and AR items during their final three tests (the WK-AR
group), and individuals who answered AR items before WK items (the AR-WK

group).
Table &4
Experimental Subgroups Formed by Applying
Alternative Retention Criteria

Sub- Group

group Retention Criterion WK-AR AR-WK Total
- None 249 246* 495
1 AR Criterion (A) 245 243 488
2 WK Criterion (W) 247 245 492
3 A+ W 244 242 486
4 A + W + Graduation (G) 231 221 452
5 A+ W+ G+ Pre-Enlistment Data 206 200 406

%248 individuals were tested; data from two individuals were
lost due to proctor error.

The AR retention criterion and the WK retention criterion were ap-
plied to these groups in an attempt to eliminate examinees who were not
really trying to do their best during the experimental tests. 1In the
case of AR items, the average examinee response time per item was on the
order of 50 to 60 seconds. Individuals with very low average AR re- .
sponse times and low final ability estimates were suspected of not real-
ly trying. Consequently, for any analyses involving AR data, individu-
als whose average AR response time was less than 10 seconds per item
were not included. This AR retention criterion affected a total of sev-
en individuals in the original examinee sample, resulting in 488 examin-
ees in Subgroup 1. In the full sample, the regression of mean AR re-
sponse time on final AR ability estimate was observed to have a positive
slope. That is, individuals with high final ability estimates tended to
have long average AR response times. None of the seven individuals af-
fected by the AR retention criterion had a high final ability estimate.

In the case of WK items, the situation was not as clear. The re-
gression of mean WK item response time on final WK ability estimate had
a negative slope. Individuals with high estimated ability levels tended
to have short average WK response times. Thus, a WK retention criterion
based on short mean response time alone was not reasonable. Instead,
visual examination of four scatterplots of ablility estimates by response
times was used to identify three individuals whose mean WK response
times were distinctly lower tlian would be predicted from their final WK
ability estimates. These "outliers” were not included in subsequent
analyses involving WK data, resulting in 492 examinees in Subgroup 2.

In analyses involving both WK and AR data (e.g., correlations be-
tween WK and AR ability estimates), the AR and WK retention criteria |
ware applied jointly (Subgroup 3 in Table 4). Since one examinee was
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affected by both the WK criterion and the AR criterion when they were
applied separately, nine individuals were eliminated by the joint appli-
cation of these criteria.

In analyses involving the experimental criterion measure (end-of-
course grade in the JEM course), it was necessary to eliminate examinees
who did not successfully complete the JEM course. This graduation cri-
terion, in conjunction with the AR and WK criteria, reduced the total
number of cases available for these analyses to 452 (Subgroup 4). The
analyses that used this subsample were central to the main purposes of
the research study.

Finally, among the 452 cases in Subgroup 4, a total of 406 individ-
uals (Subgroup 5) were identified for whom scores had been recorded on
five Air Force pre-enlistment ASVAB composites (Armed Forces Qualifying
Test—-AFQT, Mechanical, Administrative, General-Technical, and Electron-
fcs). 1In this group, the criterion-related validity of the pre-enlist-
ment ASVAB composites could be compared to the validity of AR+WK compos-
ites formed from the experimental test scores.

Data Collection Procedures

The Testing Environment

The computerized testing system was set up in a single, well-
lighted, windowless room. CRTs facing in the same direction were sepa-
rated so that examinees could not readily observe each other's respon-
ses.

The testing room was alr-conditioned and located immediately adja-
cent to a classroom and to a large engine maintenance bay in the JEM
training school. These three areas were occasionally {n use simulta-
neously and were not separated by closable doors; therefore, some dis-
traction of the experimental examinees by activities In the classroom
and the maintenance bay may have occurred from time to time. Control of
this type of problem was left to the discretion of the test proctor.

Instructions

A series of instructlons appeared on each examinee's CRT screep at
various times during the testing session. These instructions were de-
signed to establish and maintain examinee motivation to do well, to show
examinees how to enter their names and social security numbers on the
CRT keyboard, and to teach examinees how to enter their responses to the
test Ltems.

Except for names and soclal security numbers, and the words "GO”
and "STOP” entered at two polnts in the testing sesstion, the only key-
board responses required of the examinees were the numbers "17 through
"5." During an experimental test, the number entered by an examince cor-
responded to the particular response alternative the examinee wished to
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select for the displayed multiple-choice item. The testing system was ,
programmed to accept only the numbers 1 through 4 as responses to four-

choice items (all AR items and the ASVAB WK items) and only the numbers

1 through 5 as responses to five~choice items (the adaptive-test WK

items).

If, at any time during the instruction or sample-item phases of the
testing session, the examinee failed to enter either the specific re-
sponse requested or the type of response expected oy the testing system,
the system branched to an appropriate “"error screen” and asked the exam—
inee to re-enter the response. If the examinee failed to enter the ap-
propriate response a second time, a message was displayed instructing
the examinee to request proctor assistance, and a CRT "beep” tone was
sounded to summon the proctor to that testing station. Only the proc-
tors knew the keyboard entry that would cause the system to leave the
“proctor call” screen and re~display the screen with which the examinee
was having difficulty. During the experimental tests, a similar se-
quence of error screens was displayed if the examinee entered anything
other than a valid numeric response to a test item.

The examinee answered two relatively easy example items prior to
starting both the AR and WK portions of the testing session. The second
pair of example items was administered, along with appropriate instruc-
tions, after the examinee had completed the first three tests and had
taken a 5-minute rest break. The final three tests followed immediate-
ly. .

Test Administration

From the examinee's point of view, it was not obvious that six
tests were being administered. After giving instructions and sample
items for the item type to be presented in the first half of the testing
session (e.g., AR items), all three tests (BAYES, STMI, and ASVAB) in
that content domain were presented without interruption. Thus, from the
examinee's point of view, it appeared that one long test (e.g., AR) was
administered. A similar procedure was used following the 5-minute rest
period. An opportunity for the examinee to identify the points of de-
marcation separating the ASVAB WK test from one or both adaptive WK
tests did exist, however, because the ASVAB WK items had four response ;
alternatives and the adaptive test WK items had five response alterna- 3
tives. ‘

Since examinees were not told that several tests were to be given
in each content domain, it seems doubtful that many individuals grasped
the significance of the appearance of a block of four-response items.
In any case, these items appeared in all three possible (blockwise) se-
quential locations in the series of WK items.

The experimental test did not impose time limits on the examinees.
However, the test instructions did suggest that too much ti- should not
be spent on any one question; in the case of AR items, the instructions
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indicated that most people take about a minute on each question. Exam-
inees were provided with pencils and scratch paper to aid in completing
the calculations associated with the AR items. (The mean time required
to complete the entire testing session was calculated for the first 27
experimental examinees. This group averaged 89.1 minutes per session,
including the rest break.)

Counterbalancing of orders. Since the use of CRTs as a test deliv-
ery and examinee response medium was likely to be a novel experience for
most of the individuals participating in this study, and since each
testing session was to be rather lengthy, it was anticipated that warmup
and fatigue effects might influence examinee performance. In order to
distribute such effects evenly over the item types and testing strate-—
gies that were studied, each examinee was assigned to one of several
order conditions.

Using two different item types (AR and WK) and three testing strat-
egies (BAYES, STMI, and ASVAB), 12 different order conditions were gen-
erated. The 12 order conditions are shown in Table 5. One order condi-
tion was BAYES WK, STMI WK, ASVAB WK, (break), BAYES AR, STMI AR, ASVAB
AR (see WK-AR item—-type order in column 1 of Table 5). The other 11
order conditions were generated by reversing the order in which AR and
WK items appeared and/or by permuting the order of the three testing
strategies. 1In each order condition, the order of the testing strate-
gies was the same before and after the break.

Table S
Order Conditions for Test Administration

Item-Type Order

and Strategy Order
Temporal Position 1 2 3 4 5 6
WK-AR
1st BAYES STMI  BAYES STMI  ASVAB  ASVAB
2nd STMI BAYES ASVAB  ASVAB BAYES  STMI
3rd ASVAB  ASVAB STMI BAYES STMI BAYES
4th BAYES STMI  BAYES STMI  ASVAB  ASVAB
5th STMI BAYES ASVAB ASVAB BAYES STMI
6th ASVAB ASVAB STMI BAYES STMI BAYES
AR-WK
1st BAYES STMI BAYES STMI ASVAB ASVAB
2nd STMI BAYES ASVAB ASVAB BAYES  STMI
3rd ASVAB  ASVAB STMI BAYES STMI BAYES
4th BAYES STMI1 BAYES STMI ASVAB ASVAB
5th STMI BAYES ASVAB ASVAB BAYES  STMI
é6th ASVAB ASVAB STMI BAYES STMI BAYES

The 12 order conditions were assigned to examinees Iin a gystemati-
cally rotated fashion in order to insure that approximately the same
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number of individuals was tested under each order condition. Exclusive
of two cases that were lost due to proctor errors, 40 cases were tested
under one order condition, 41 cases were tested under each of eight oth-
er order conditions, 42 cases were tested under each of two other order
conditions, and 43 cases were tested under the remaining order condi-
tion. For many of the analyses, individuals tested under the six WK-AR
order conditions were combined and individuals tested under the six AR-
WK order conditions were combined, thus creating two large groups with
sample sizes of more than 200 in each group.

Within the large WK-AR group and the large AR-WK group, warmup and
fatigue effects were not evenly distributed over the two item types.
However, such effects were evenly distributed over testing strategies
since each strategy was administered to approximately one-third of the
individuals in each group at each of the six possible temporal positions
in the series of tests. In those analyses that combined the large WK—-AR
and AR-WK groups (e.g., certain criterion-related validity analyses),
warmup and fatigue effects should be evenly distributed over both item
types and testing strategies. As mentioned earlier, adaptive tests giv-
en before the break were administered under a fixed-entry (FE) condition
and adaptive tests given after the break were administered under a vari-
able-entry (VE) condition. Thus, in this study, warm-up and fatigue
effects, if present, are necessarily confounded with the effects of
adaptive—-test entry type.

Item "fill-in" procedure. In order to make all the items in the WK
and AR adaptive-test item pools available to both adaptive testing
strategies (BAYES and STM1), an item "fi1ll-in" procedure was imple-
mented. In this procedure, whichever adaptive testing strategy came
first in an examinee's assigned order condition was allowed to select
and administer any items it required from the appropriate item pool.

The adaptive testing strategy that followed then checked to see whether
an item it required had been administered during the first adaptive
test. Whenever an item had been administered in the first adaptive
test, the previously recorded item response was used without displaying
the item on the CRT screen a second time. Whenever an item had not been
previously administered, it was displayed on the CRT screen and the ex-
aminee response was recorded. This procedure continued throughout the
second adaptive test. Thus, those items selected by the second adaptive
test, but which had not been previously administered, were "filled in"
to complete the item response vector for that test.

The same procedure was used for the two adaptive tests that fol-
lowed the 5-minute rest period. The strategy used in an examinee's
third adaptive test was allowed to select and administer any items it
required from the appropriate item pool. Then the strategy used in the
fourth adaptive test "filled in" any items it selected that had not been
administered during the third adaptive test.

The item fill-in procedure served three purposes. First, to the
extent that the two adaptive testing strategies selected the same items,
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significant amounts of examinee time could be saved. Because each test-
ing session was to be rather lengthy, this offered the possibility of
reducing fatigue effects and controlling the problem of declining exam-
inee motivation. Second, the very question of a tendency for the adap-
tive strategies to select the same items was of psychometric interest.
Even though the BAYES and STMI strategies use different criteria for
selecting ftems, it was known that these criteria are not completely
independent of one another. The fill-in procedure allowed direct as-
sessment of the tendency for the BAYES and STMI strategies to select the
same items. Finally, the fill-in procedure insured that both adaptive
strategies had access to the best items in the two adaptive-test item
pools. If the strategies had been forced to use different items, ob-
served differences among the test validities and other dependent vari-
ables could have been interpreted as effects that would diminish or dis-
appear if each strategy had been given access to the entire item pool.

Use of an item fill-in procedure of the type implemented in this
research will cause errors of measurement for the adaptive testing
strategies to be correlated. If the difference between an examinee's
ability estimate obtained under one strategy and the mean of ability
estimates for that strategy among people at the examinee's same (true)
ability level is positive, then the analogous difference obtained in the
other adaptive test will also tend to be positive. Conversely, if one
difference is negative, the other will tend to be negative. Correlated
errors of measurement of this type were not believed to be detrimental
to the purposes of the research. While correlations between ability
estimates obtained under the BAYES and STMI strategies were higher in N
this research than they would have been 1if the strategies had selected
items from parallel, but independent, item pools, the correlation be-
tween WK and AR ability estimates from a given strategy, the correla-
tions between ability estimates from a given adaptive strategy and
scores derived from the ASVAB, and the criterion-related validity coef-
ficients for a given strategy, were all exactly what they would have
been if only that strategy had access to the item pools. This would not
be the case if the two strategies had selected items from two indepen-
dent (and only approximately parallel) item pools or had alternated in
selecting items from a single item pool.

The Criterion

The criterion measure used in the validity analysis portion of this
study was end-of-course grade in the JEM training school. Criterion
scores were available for 461 individuals who had been tested with the
experimental tests and who subsequently completed the JEM course.

The training course was broken down into four parts, or "blocks.”
At the end of each block of instruction, trainees were administered a
performance examination and a written examination covering the material
taught in the block. The performance examinations required each trainee
to demonstrate proficiency with respect to specific job-related tasks
spelled out in the course objectives. Trainee proficiency was rated as
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satisfactory or unsatisfactory. A rating of satisfactory on an end-of-
block performance examination was required before a trainee could at-
tempt the written examination for the block.

The end-of-block written examinations were comprised of multiple-
cholice items, each scored correct or incoriect. The written examina-
tions for Blocks 1, 2, 3, and 4 contained 50, 50, 50, and 30 items, re-
spectively, at the time data for this research were collected. A train-
ee received 2 points for each item answered correctly in the first three
written examinations and 3 1/3 points for each correct answer in the
Block 4 written examination. Minimum passing scores on the written ex-
aminations were 70, 72, 68, and 60 for Blocks 1 through 4 respectively.
An individual who failed to achieve a passing score on an end-of-block
written examination was allowed to take an alternatre form of the exami-
nation at a later date. 1f the person passed the second test, the writ-
ten-test score for that block was set equal to ihe minimum written-test
passing score for the block, regardless of the number of points earned
in the second test.

The end-of-course grade assigned to an individual by the JEM school
was equal to the mean of the four written-test scores that the individ-
ual had earned. The lowest end-of-course grade observed among the 461
individuals who completed the course successfully (i.e., attained a rat-
ing of satisfactory or all four performance examinations and passing
scores on the written examinations) was 68. The highest course grade
observed was 99. These extreme values span virtually the entire range
of possible passing scores. Among the 452 individuals ultimately used
in the criterion-related-validity--analysis portion of this research
(Subgroup 4), the mean and the standard deviation of the criterion
scores were 83.73 and 6.97, respectively.

It cannot be assumed that the availlable criterion scores were high-
ly reliable. 1In addition to the inevitable problem of measurement error
when trying to estimate a person's “"true” achievement level in the JEM
course, there was also a probiem with inaccurate reporting of examinees'
block scores. Anomalous data were noted in the scores reported for sev-
eral of the examinees in Subgroup 4. Consequently, a request for veri-
fication of all scores was 1ssued and another set of data records was
received. Analyses proceeded using the verified data. Unfortunately,
evidence for the exiatence of at least one remaining transcription error
was later uncovered. Tt was found that one individual's Block 3 written
test score had been reported as 60 when the minimum passing score for
that block was 68. Subsequent investigation revealed that the Block 3
score should have been reported as 70. Fortunately, the value of the
end-of-course grade that was used in the validity analyses was only two
points lower than it should have been as a result of this error.

It is possible that other clerical errors of this type remained
undetected. While such errors will tend to reduce the criterion-related
validity of all the TSSM combinations studied, they should not vitiate
comparisons among the various strategies.
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Design

Independent Variables

Analyses for single tests. The primary objective of this research
was to investigate the effects of the five TSSM combinations (BAYES,
STMI, ASVAB/B, ASVAB/M, and ASVAB/N) on criterion-related validity. In
the analyses for single tests, TSSM was treated as a nominal independent
variable with five "treatment levels” that were fully crossed with the
two treatment levels (WK and AR) of an Item Type independent variable,
and the two treatment levels (first half of testing session and second "
half of testing session) of an Order independent variable. Since test
scores were obtained for each examinee under every level of these three
independent variables, they may be referred to as "within subjects"” in-
dependent variables. (However, as noted below, a given examinee was not
tested under every possible combination of levels of the independent
variables.)

These considerations suggested that a useful way to conceptualize
the data structure in the analyses for single tests was In terms of a 5
X 2 x 2 three-way cross—classification with repeated observations on
each factor. Within each of the 20 cells of this cross-classification,
the test scores of approximately 246 examinees were obtained. Approxi-
mately 41 of the examinees in each cell were tested under each of the
six possible order permutations of BAYES, STMI, and ASVAB. This served
to counterbalance any "micro"” order effects that might exist within each .
half of the testing session.

As noted earlier, adaptive tests administered before the 5-minute
break were given under fixed-entry (FE) conditions, and adaptive tests
administered after the break were given under variable-entry (VE) condi-
tions. Thu:. any effects associated with adaptive-test entry-type were
confounded with Order in the analyses for single tests. The confounding
of Order and entry-type effects was not complete, however, since the
ASVAB subtests were 2Jdministered under FE conditions regardless of the
Order condition.

By treating Item Type and Order as independent variables, the ef-
fects of these two variables could be statistically controlled during \
the analysis of single-test validity coefficients. This provided more )
precise statistical tests of the effect of TSSM, the independent vari- :
able of primary interest. The decision to treat TSSM, Item Type, and
Order as within-subjects variables was prompted by a desire to maximize
the sensitivity of the analyses conducted to detect the effects of these !
variables on criterion-related validity.

Since each examinee was "nested” within one of two Item—Type-by-
Order conditions (either WK-AR or AR-WK), any test of the two-way inter- )
action between Item Type and Order conducted in the analysis of single- ;
test validities had to be based on a contrast between independent groups
of examinees. 1In most cases, such tests will be less sensitive than
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statistical tests based on repeated observations of the same examinees.
It was necessary to treat Item-Type-by-Order as a "between-subjects”
variable in the analyses for single tests because of practical limita-
tions on the length of time during which examinee motivation could be
maintained at high levels and because of the unavailability of parallel
item pools to use with each examinee under the two Item—Type-by-Order
conditions. This situation seemed acceptable, since there was no a
priori reason to anticipate the existence of such an interaction.

Analyses for composites. The criterion-related validity of compos-
ite test scores (AR scores combined with WK scores) was also studied.
In these analyses, Item Type (AR versus WK) was no longer treated as an
independent variable. Moreover, Order (first versus second half of
testing session) was replaced by Content Order (AR test administered
before WK test or vice versa) as an independent variable. Thus, a suit-
able conceptualization of the data structure for the analyses of com-
posite~-test validities is a two-way cross-classification with five lev-
els on a within-subjects factor (TSSM) and two levels on a between-
subjects factor (Content Order). As will be discussed below, the Con-
tent Order independent variable in the analyses for composite scores was
logically related to the Item-Type-by-Order two-way interaction de-
scribed above in connection with the three-way cross—-classification for
single-test validities.

Dependent Variables

In the analyses for single tests, four different dependent vari-
ables were examined. The dependent variables were test score, mean ex-
aminee response time, mean computer response time, and criterion-related

validitx.

Test score. This dependent variable was the value of either the
IRT ability estimate or the number-correct score generated under a par-
ticular combination of levels of the three independent variables. While
IRT ability estimates derived from different tests under different con-
ditions, but using items calibrated on the same metric, are directly
comparable, comparisons of IRT ability estimates with number-correct
scores, and comparisons among number-correct scores from different (non-
parallel) tests, are not meaningful. These considerations guided the
analysis of ability estimates and number-correct scores. In all compar-
isons between ability estimates obtained from the two adaptive tests and
ability estimates obtained from ASVAB, the adaptive~test ability esti-
mates were based on 30 and 20 items for WK and AR, respectively, in or-
der to make the comparisons equitable.

Mean examinee response time. This dependent variable was computed
for a given examinee and a given test as the mean elapsed time in sec-
onds, over all {items in the test, from the beginning of {tem presenta-
tion until the examinee responded to each item. Thus, each examinee had
six mean examinee response time (MERT) scores--one each for BAYES, STMI,
and ASVAB under both WK and AR conditions. Whenever the second adaptive
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test administered during either the WK or AR half of a testing session
selected an item that had already been administered by the first adap-
tive test in that half, not only was the original item response utilized
by the second test, but the original examinee response time was recorded
for the second test as well. Thus, to the extent that both adaptive
testing strategies used the same items, a strong correlation, above and
beyond that due to individual differences in response rate, was induced
between MERT values for the two adaptive tests. This effect was not a
problem, given the objectives of the research, since the expectation of
the MERT values for each adaptive test would still be equal to the value
that would be obtained if only one adaptive test had been administered
(assuming that warmup and fatigue effects have been properly counterbal-
anced).

Mean computer response time. This dependent variable was computed
for a given examinee and a given test as the total time elapsed from the
start of the test (exclusive of instructions and sample questions that
were presented before the start of the first test that used a given item
type) to the end of the same test, minus the sum of the examinee re-
sponse times for that test, divided by the number of items administered.
Unfortunately, this method of determining average computer response time
turned out to have one serious drawback. The clock measuring examinee
response time was shut off and reset to zero whenever the examinee re-
sponded, regardless of whether the response was valid (admissible) or
invalid. Due to an oversight during system development, a separate re-
cord was not kept of the elapsed time between examinee entry of an inva-
114 response and entry of a valid response. Thus, since the clock mea-
suring elapsed time for the entire test continued running after an inva-
1id response, the value of the mean computer response time (MCRT) vari-
able was inflated for a given test whenever the examinee entered one or
more invalid responses during that test. In a few cases where the exam-
inee required proctor assistance but the proctor was busy helping other
examinees, a significant amount of waiting time elapsed that was ulti-
mately, and irretrievably, confounded with actual computer response
time. These probler.s were considered in conducting the analysis of MCRT
values.

MCRT was computed only for the first of the two adaptive tests that
a person received during each half of the testing session. This was
because the second adaptive test in each half utilized the item fill-in
procedure described earlier. Under the item fill-in procedure, normal
computer response time was Increased by the need to check whether each
item selected had been administered during the previous adaptive test.
On the other hand, computer response time was reduced somewhat whenever
it was found that an item had previously been administered, since there
was then no need to display it.

In view of these considerations, the data from those examinees as-
signed to order conditions in which BAYES preceded STMI were used to
compute MCRT values for BAYES. Similarly, data from examinees assigned
to order conditions in which STMI preceded BAYES were used to compute
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MCRT values for STMI. Computer response times under AR and WK condi-
tions were kept separate, but within each item type data from both con-
tent orders (WK-AR and AR-WK) were pooled for the data analyses.

As it turned out, after eliminating three examinees due to the WK
retention criterion, a total of 246 examinees who had taken BAYES WK
before STMI WK and 246 who had taken STMI WK before BAYES WK remained.
Elimination of seven cases due to the AR retention criterion gave 244
cases in each of these groups. Since ASVAB was not subject to the item
fill-in procedure, computer response times for the ASVAB tests were
available from members of both groups. Thus, a total of 492 ASVAB WK
and 488 ASVAB AR MCRT values were analyzed.

Single-test validity. The last dependent variable studied in the
analyses for single tests, and the one of primary importance to the ob-
jectives of this research, was the level of criterion-related validity
observed under each possible combination of levels of the independent
variables. Criterion-related validity was indexed by the Pearson prod-
uct-moment correlation between the ability estimates or number-correct
scores obtained under a particular combination of independent variable
levels and the criterion scores (end-of-course grades) of the examinees
observed under that set of conditions. Since each examinee was nested
within an Item-Type-by-Order condition (either WK-AR or AR-WK), each
examinee contributed to 10 of the 20 validity coefficients computed for
single WK or AR tests.

Composite-test validity. In addition to the analysis of criterion-
related validity coefficients for single tests, the criterion-related
validity of composite scores (linear combinations of WK and AR O esti-
mates and linear combinations of WK and AR number-correct scores) was
also studied. Both equally-weighted and optimally-weighted (least-
squares) composites of WK and AR test scores were studied. 1In both
cases, the formation of composite scores reduced the total number of
validity coefficients from 20 to 10 and resulted in a two-way cross-
clasgification with five levels on the first factor (TSSM) and two lev-
els on the second factor (Content Order; i.e., WK~AR or AR-WK). Data
from each examinee were involved in 5 of the 10 validity coefficients
computed for equally-weighted composites and 5 of the 10 validity coef-
ficients computed for optimally-weighted composites.

DATA ANALYSIS PROCEDURES

The Adaptive Test Fill-In Procedure

As mentioned earlier, a question of psychometric interest that has
not been investigated previously is the tendency for different adaptive
testing strategies to select the same items. The item fill-in procedure
used in thils research allowed a direct assessment of this tendency for
two strategies that represent the state of the art in adaptive testing.
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To address this issue, the number of items "filled in" (i.e., actu-
ally administered) during each examinee's second adaptive WK test and
during each examinee's second adaptive AR test was determined among the
452 examinees that made up Subgroup 4. While data for WK and AR adap-
tive tests were treated separately, results for the two strategles
(BAYES and STMI) were pooled. Relative frequency distributions of the
number of items filled in for each item type were examined.

Characteristics of Ability Estimates

Out-of-Bounds and Non-Converged Maximum Likelihood Estimates

One aspect of the analysis of ability estimates obtained in this
research was an examination of "out-of-bounds” and "non-converged” maxi-
mum likelihood estimates of 8. First, the number of "out-of-bounds”
ability estimates was determined for the STMI AR and WK tests and the
ASVAB/M AR and WK tests. Out-of-bounds estimates had been set to either
-5.0 or 5.0, so the number of cases falling at either of these bound-
aries was determined. These counts were determined separately for the
WK-AR and AR-WK groups within Subgroups 1 and 2 at test lengths of 20
and 30 items for STMI AR and WK, respectively, in order to facilitate
comparison with the corresponding ASVAB subtests.

Since the STMI strategy had generated an ability estimate after
each AR or WK item, the number of out-of-bounds estimates obtained after
administering each item was also determined. This count was made in
Subgroup 4 for items 1 through 25 in STMI AR and items 1 through 35 in
STMI WK.

The number of "non-converged” cases after administering each item
in STMI AR and STMI WK to members of Subgroup 4 was also determined.
Non-convergence implies that the change in O in the last allowed numeri-
cal iteration was greater than .00l. The number of non-converged esti-
mates obtained in scoring ASVAB/M AR and ASVAB/M WK was also determined
in this subgroup.

Distributions and Correlations

The relative frequency distribution, the mean, standard deviation,
skew, kurtosis, minimum, and maximum of each estimator or score were

‘also determined. Frequency distributions and summary statistics were

obtained for the WK-AR and AR-WK groups separately within Subgroups 1
and 2. This was done for all 10 combinations of TSSM and Item Type.

Bivariate scatterplots were generated for eacu of the 10 possible
pairings of either two ability estimates or one ability estimate and an
ASVAB number-correct score for the AR and WK item types. This was done
within the Subgroup 1 and 2 WK-AR and AR-WK groups separately, giving a
total of 40 scatterplots. Examination of these plots did not suggest
the presence of any strongly non-linear regressions, although there was
a slight tendency toward non-linearity at extreme values of the maximum
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likelihood estimator. Since the observed relationships were essentially
linear, Pearson product-moment correlations were computed.

Bivariate correlations were also computed within and between the WK
and AR domains, separately for the Subgroup 4 WK-AR and AR-WK groups.
The correlations in this summary table were computed using modified
boundaries for the maximum likelihood ability estimates from STMI and
ASVAB/M. These modified boundaries, which will be described below, were
adopted following an examination of the effects of limiting boundary
values oa the criterion-related validity of STMI and ASVAB/M ability
estimates.

Information

In order to determine how well each TSSM could discriminate indi-
viduals at a given level of ability from individuals at nearby ability
levels, score information functions (Birnbaum, 1968, p. 453) were gener-
ated for each TSSM. Score information functions for the ASVAB/N sub-
tests were computed analytically (Lord, 1980, p. 73). Score information
functions for fixed-entry BAYES and STMI, ASVAB/B, and ASVAB/M were es-
timated from computer simulations in which a large number of simulated
examinations were administered at each of a large number of O levels.

In comparing the adaptive-test information functions to the ASVAB/N
information functions, the ASVAB functions were scaled up to represent
subtests of the same length as the adaptive tests (Lord, 1970, p. 155).
The adaptive-test information functions were also compared to curves
obtained by evaluating the amount of information available from the most
informative items in each item pool at several 9 levels.

Response Times

Mean Examinee Response Time

Six frequency distributions--one each for BAYES, STMI, and ASVAB
under both WK and AR conditions--were constructed for the WK-AR and AR-
WK groups separately in Subgroups 1 and 2. 1In addition, the mean, stan-
dard deviation, skew, kurtosls, minimum value, and maximum value of each
of these MERT distributlons were determined.

Mean Computer Response Time

Data for the analysis of MCKRT for BAYES were obtained from individ-
uals who had taken BAYES before ST!HI; MCRT data for STMI were obtained
from individuals who had taken STMI before BAYES. Frequency distribu- ‘
tinng and summary statistlics were obtalned for each of these groups on
the appropriate AR and WK adaptive tests and also on the ASVAB AR and WK
tesgts,

Since many of the larger MCRT values fn each distribat lon were
probahly econtaminated, summary statistlics that would be stronply In-
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fluenced by extreme values were not computed. Instead, the mode, the
minimum value, and the 25th, 50th, 75th, and 90th percentiles of each
distribution were determined. The mode of each grouped frequency dis-
tribution was computed using quadratic interpolation between the three
largest observed relative frequencies in the distribution. The selected
centile points of the distributions were computed using linear interpo-
lation within corresponding cumulative relative frequency distributions.

Evaluation of Variable Entry Procedure

As described previously, the adaptive tests administered before
each examinee's 5-minute break were given under fixed-entry (FE) condi-
tions and the adaptive tests administered after the break were given
under variable-entry (VE) conditions. Presumably, if the initial abili-
ty estimates used in starting a VE test correlate substantially with
underlying true ability, the first several items administered under VE
conditions will be more appropriate for an examinee than items adminis-
tered under FE conditions. This should result in more accurate ability
estimates, particularly in the early stages of the test.

If each examinee's true abllity level were known, a plot of the
correlation between estimated and true ability as a function of number
of items administered would show a negatively accelerating curve that
asymptotes toward 1.0 as test length increases without limit. Since
true abilities were unknown, interim ability estimates were correlated
with the final ability estimates obtained at the end of each adaptive
test. It was assumed that any advantage inherent in the VE procedure
would manifest itself in higher correlations between interim and final
ability estimates, particularly in the early stages of a test.

Validity Analyses

Single Tests

Sequential validity analysis. Pearson product-moment correlations
were computed between provisional ability estimates and criterion scores
at each stage of each adaptive test. These "sequential validities"” were
plotted for the WK-AR group from Subgroup 4 for BAYES WK and STMI WK,
and compared to the criterion-related validity of ASVAB/N WK in this
group at 30 items. Similar correlations were plotted for the AR-WK
group in Subgroup 4 for BAYES AR and STMI AR and compared to the .validi-
ty of ASVAB/N AR at 20 items.

The AR-WK group was not used in plotting the sequential wvalidity .
data for WK adaptive tests because the variable-entry (VE) procedure
induced an a priori correlation between the initial WK ability estimates
and criterion scores. This a priorl correlation was equal to the final
value of the criterion-related validity coefficient for the AR adaptive
test of the same type and occurred because the initial WK ability esti-
mate generated under VE conditions was a linear transformation of the |
final AR ahility estimate obtained under FE conditions. Similar consid-
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erations indicated that the WK~AR group should not be used in plotting
the sequential validity data for AR adaptive tests. To do so would con-
found final WK validity obtained under FE conditions with sequential AR
validity under VE conditions.

Multivariate linear-model analysis. The sequential validity analy-
sis helped to clarify the effect of adaptive-test length on criterion-
related validity. However, it did not provide a procedure for making
statistical inferences about the effects of TSSM, Item Type, and Order
on the level of single-test validity. While such inferences might be
approached through a series of statistical tests of the significance of
differences between selected pairs of validity coefficients (Glass &
Stanley, 1970, pp. 311, 313), interpretation of the resulting large num-
ber of correlated significance tests would be difficult and the family-
wise error rate (Kirk, 1968, p. 85) for each major hypothesis of inter-
est would be well above acceptable levels.

Since data had been collected in a manner congruent with a three-
way analysis of variance (ANOVA) layout in the case of single-test va-
lidities, an "ANOVA-like" analysis of the obtained validity coefficients
was indicated. It was clearly desirable to assess the "main effect” of
each independent variable on the level of test validity while the ef-
fects of the other independent variables were statistically controlled.
Also, the possibility of testing for the presence of interactions among
the independent variables was attractive.

To conduct a univariate ANOVA (with validity coefficients as re-
spounse measures) would require the following three conditions to be
met: (a) the response measure (the validity coefficient in each cell of
the three-way cross—classification) would have to be approximately nor-
mally distributed over random samples; (b) the sampling variance of the
response measure would have to be approximately constant over treatment
combinations; and (c¢) the variance-covariance matrix among the sample
validities would have to satisfy certain rather restrictive structural
requirements (Winer, 1971, pp. 281-283, chap. 7).

If sample size is moderate, the first condition above will not be
satisfied unless the population validities are all near zero. If sample
size is large, the sampling distribution of a correlation coefficient
will be approximately normal, but the closeness of the approximation
will depend on both the value of the population correlation (£) and the
sample size (N). The larger the absolute value of p, the larger N must
be in order to insure approximate normality.

The variance of the sampling distribution of a correlation coeffi-
cient also depends on both the value of 0 and the sample size. However,
if the hypothesis of equality of population validities under all possi-
ble treatment combinations is true, and i{f all the sample validities
have been computed using approximately the same numbér of observations,
the sampling variances of the validities will be approximately equal.

On the other hand, if any of the statistical tests associated with an
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ANOVA of (raw) validities were significant, it would suggest that the
homoscedasticity assumptic~-i must be false for some of the cells in the
layout and that, in turn, ‘e p-values assoclated with the non-signifi-
cant tests were probably inaccurate.

The normality and homoscedasticity requirements listed above could
be satisfied by conducting an ANOVA that used Fisher's transformation
(Kendall & Stuart, 1973, pp. 304-305) of the sample validities as the
response measurz. For moderate to large samples from a bivariate normal
population, this t-ansformation provides a sample statistic (referred to
here as ~*) that is approximately normally distributed regardless of the
value of the population correlation. Moreover, the sampling variance of
this statistic 1s (approximately) 1/(N-3), a quantity that is also inde-
pendent of the population correlation. However, one problem remains.

An analysis of z* values would not insure that the structural require-
ments imposed on the variance-covariance matrix among the z* would be
satisfied. In fact, due to widely varying levels of dependency among
the various ability estimates and/or scores computed in this research,
it seemed that making any a priorl assumptions about the structure of
the variance-covariance matrix among the z* would be hazardous at best.

When the structural requirements imposed on a variance-covariance
matrix among dependent sample means cannot be satisfied in a traditional
ANOVA, one of two approaches is usually followed. Either an approxi-
mate, but conservative, test procedure is implemented, with an attendant
loss of statistical power, or a multivariate ANOVA (MANOVA) is conducted
(see Collier & Hummel, 1977, pp. 158~173, 211-233). 1In the MANOVA ap-
proach, repeated observations of a single response measure are treated
as though they were individual observations taken from several correlat-
ed response variables. 1In view of the fact that most hypothesis tests
regarding differences between validity coefficients tend to have rather
low power (Lord, 1978, pp. 426-427), approximate procedures that would
further reduce statistical power were considered ill-advised in the con-
text of this research. Thus, a "MANOVA~like" analysis was indicated.

A detailed discussion of the rationale behind the statistical in-
ference procedure that was developed for the analysis of test validity
coefficients in this research is given elsewhere (Sympson, in prepara-
tion). The principal assumptions of the procedure and an overview of
the methodology will be given here, but rigorous arguments and support-
ing proofs that provide formal justification for the procedure will be
omitted. This inference procedure may be characterized as a multivari-
ate linear-model analysis of test validity coefficients.

As is widely known, fixed-effects ANOVA can be accomplished through
the mechanism of univariate multiple linear regression with "coded” in-
dependent variables (Cohen & Cohen, 1975, pp. 3-5, chap. 5). Such anal-
yses are special cases of the univariate general linear model. 1In these
analyses, the main effect of each nominal independent variable in the
ANOVA layout 1s associated with a particular set of coded independent
variables in the linear (multiple regression) model. Each independent
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variable in the ANOVA layout contributes one fewer coded variables to
the main-effect portion of the linear model than there are "treatment
levels” on that variable.

Interactions among the independent variables in the ANOVA layout
are also represented by sets of coded independent variables in the 1lin-
ear model. The set of coded variables representing the interaction of
any two nominal independent variables in the ANOVA is obtained by taking
the element-by-element set product of the two sets of coded variables
representing their main effects. Thus, if there are f treatment levels
associated with nominal independent variable F, and g treatment levels
associated with nominal independent variable G, their two-way interac-
tion, FG, will be represented by a set of (f-1)(g-1l) coded variables in
the interaction portion of the linear model. The kth element of a coded
FG two-way interaction variable will be equal to the product of the kth
element of one particular F main-effect variable and the kth element of
one particular G main-effect variable.

Higher order interactions are represented in the same manner. For
example, the three-way interaction of the two previous variables with a
nominal independent variable H, having h treatment levels, would be rep-
resented by (f-1)(g-1)(h-1) coded variables in the interaction portion
of the linear model. These coded variables would be obtained by gener-
ating the element-by-element set product of the FG two-way interaction
variables described above with the coded main-effect variables for vari-
able H.

Testing main effects or interactions in a linear-model approach to
ANOVA is accomplished by testing whether inclusion in the linear model
of the entire set of coded variables associated with some particular
main effect or interaction significantly increases the squared multiple
correlation for predicting the response measure (Cohen & Cohen, 1975,
pp. 141-144). 1If the multiple correlation does not increase signifi-
cantly when a particular set of coded variables is added to the model,
the main effect or interaction associated with that set of variables is
declared non-significant in the ANOVA.

The significance tests associated with a standard multiple linear
regression analysis of ANOVA data require the same three conditions
(normality, homoscedasticity, and patterning of the variance-covariance
matrix among response measures) that were specified earlier (Cohen &
Cohen, 1975, pp. 48-49, p. 404). Since the required variance-covariance
structure cannot safely be assumed for the cype of data collected in
this research, a univariate linear-model analysis of the sample z* val-
ues could not be justified. Instead, a multivariate extension of the
linear-model approach was implemented. This procedure is conceptually
similar to a MANOVA of correlated sample means by the general linear
model (Bock, 1975, chap. 7).

Cell coding. For the analysis of single-test validities, the vari-
ous treatment combinations assocliated with the three independent vari-
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Figure 2
Cell Codes in the 3-Way Cross-Classification for Single-Test Validities
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ables were assigned numerical "cell codes.” These codes are shown in
Figure 2. Each of the 20 TSSM validity coefficients computed for single
AR and WK tests was assoclated with a particular combination of treat-
ment levels and, thus, a particular cell code. For example, the crite-
rion-related validity coefficient for the BAYES AR adaptive test when
administered in the first half of an individual's testing session was
asgsociated with cell code 1. Similarly, the validity coefficient for
the ASVAB/N WK test among individuals who took this test during the sec-
ond half of their testing session was associated with cell code 20. The
validity coefficients associated with cell codes 1, 4, 5, 8, ..., 17,
and 20 were computed on one group of individuals (the AR-WK group in
Subgroup 4) while the validity coefficients associated with cell codes
2, 3,6, 7, «u., 18, and 19 were computed on another group of individu-
als (the WK-AR group in Subgroup 4).

The first step in the statistical analysis of single TSSM validi-
ties was to array the 20 obtained criterion-related validity coeffi-
cients in a row vector, V, such that the first element was the validity
coefficient assoclated with cell code 1, the second element was the va-
lidity coefficient associated with cell code 2, and so on through the
20th element. A similar ordered vector, z, was created in which the 20
elements were the Fisher z* transformations of the criterion-related
validity coefficients in V. Next, a complete set of 20-element coded
vectors for a linear-model analysis of a 3-way cross-classification was
generated. There were four main-effect vectors for TSSM, one main-
effect vector for Item Type, one mailn-effect vector for Order, four in-
teraction vectors for TSSM by Item Type, four interaction vectors for
TSSM by Order, one interaction vector for Item Type by Order, and four
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interaction vectors for TSSM by Item Type by Order.

While a variety of coding schemes could have been used in creating
the set of 19 vectors for the linear-model analysis, the effects coding
method (Cohen & Cohen, 1975, pp. 188-190) was selected. As noted by
Cohen & Cohen (p. 189), the choice of a particular coding scheme in a
linear-model analysis does not influence the conclusion that is reached
regarding the statistical significance of each main effect or interac-
tion. However, for this research, effects coding provided a particular-
ly convenient method for conducting desired one-~degree-of-freedom a pos-
teriori significance tests (Kirk, 1968, pp. 87) following the detection
of a significant main effect or interaction. The 19 coded vectors used
in this research are shown in Table 6.

Table 6
Coded Vectors for Linear-Model Analysis of Single-Test Validities

Type TSSM by

Cell Item Or- TSSM by TSSM by Item Type
Code*  TSSM Type der Item Type by Order Order by Order

1 1 0 0O 1 1 1 0 0O 1 0 0O 1 1 0 00O

2 1 0 0 O S | 1 0006 -1 000 -1 =-10200

3 100 0 -1 1 -1 0 0 O 1 000 -1 -1000

4 1 000 -1 -1 -1 0020 -1 000 1 1 0 0 O

5 0 1 0 O 1 1 01 00 01 0 0 1 01 0 0 .
6 0 1 0 O 1 -1 01 0O 0-1 0 0 -1 0-1 0 O

7 010 0 -1 1 0-1 0 O 01 0 0 -1 0-1 0 O

8 0100 -1 -1 0-1 0 O 0-1 0 O 1 01 0 0

9 0 0 1 O 1 1 0 01 O 0 010 1 0 01 0

10 0 0 1 O 1 -1 0 010 0 0-1 0 -1 0 0-1 0

11 0 0 1 0 -1 1 0 0-1 O 0 01 0 -1 0 0-1 0

12 0 01 0 -1 -1 0 0-1 O 0 0-1 0O 1 0 01 0

13 0 0 0 1 1 1 0 0 01 0 0 0 1 1 0 0 0 1

14 0 0 0 1 1 -1 0 0 01 0 0 0-1 -1 0 0 0-1
15 0 0 0 1t -1 1 0 0 0-1 0 0 01 -1 0 0 0-1

16 0 0 0 1 -1 -1 0 0 0-1 0 0 0-1 1 0 0 0 1

17 -1 -1 -1 -1 1 1 -1-1-1-1 =-1-1-1-1 1 -1 -1-1-1
18 -1 -1 -1 -1 1 -1 -1-1-1-1 1 1 1 1 =1 11 1 1

19 -1 -1-1-1 -1 1 1 1 11 -1-1-1-1 =1 1 1 1 1 ?
20 -1-1-1-1 -1 -1 1 1 1 1 1 1 1 1 1 -1 -1-1-1 |

*See Figure 2 for definition of cell codes. Y

Linear contrasts. The elements of each coded vector in a linear-
model analysis serve to define a linear contrast (Winer, 1971, p. 171)
among the sample statistics associated with the various treatment combi- @
nations in the ANOVA layout. For example, in Table 6 the first of the ‘
19 coded vectors generated for the linear-model analysis contains the
following elements: 1, 1, 1, 1,...(12 zeroes)..., -1, -1, -1, -1. Since i
the elements of each coded vector were associated in subsequent steps of ‘F
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the analysis with the elements of the ordered vector Z, the first coded
vector implicitly defines a contrast between the z* statistics associat-
ed with cells 1, 2, 3, and 4 (the BAYES tests) and the z* statistics
associated with cells 17, 18, 19, and 20 (the ASVAB/N tests).

The second, third, and fourth coded vectors served to contrast
STMI, ASVAB/B, and ASVAB/M, respectively, with ASVAB/N in a similar man-
ner. In each case, four z* statistics were assigned a contrast coeffi-
cient of +1 and the z* statistics of the ASVAB/N tests were assigned
contrast coefficient values of -1. (All contrast coefficients in a
coded vector were ultimately divided by the number of elements equal to
+1 in that vector. This rescaled each contrast so that it reflected the
difference between the mean z* statistic for the set of cells originally
weighted +1 and the mean z* statistic for the set of cells originally
weighted -1.) -

The first four coded (contrast coefficient) vectors in Table 6 de-
fine contrasts that exhaust the four degrees of freedom available for an
overall test of the main effect of TSSM. The fifth and sixth coded vec-
tors contain contrast coefficients for contrasts that exhaust the two
(single) degrees of freedom avallable for tests of the main effects of
Item Type and Order. The fifth coded vector contains the elements 1, 1,
-1, -1, «.., 1, 1, -1, -1, which contrasts AR tests with WK tests. The
sixth vector contains the elements 1, -1, 1, -1, ..., 1, -1, 1, -1,
which contrasts tests from the first half of the testing session with
tests from the second half.

The coded vectors for interaction among the three independent vari-
ables were obtained by generating the element-by-element product of
pairs of main-effect vectors. Thus, whenever either +1 or ~1 appeared
in the same position of two main-effect vectors for two different inde-
pendent variables, a +1 appeared in the corresponding position of the
resulting interaction vector. Whenever a +1 appeared in one main-effect
vector and a -1 appeared in the same position of a main-effect vector
for a different independent variable, a -1 appeared in the corresponding
position of the resulting interaction vector. Each of the 13 interac-
tion vectors in Table 6 defines a particular contrast among the z* sta-
tistics assoclated with the cells of the 5 x 2 x 2 cross-classification.
The complete set of 19 coded vectors in Table 6 defines a set of con-
trasts that exhaust the 19 degrees of freedom available in a 5 x 2 x 2
linear-model analysis of single-test z* statistics.

Estimating the variance-covariance matrix. The asymptotic correla-
tion (over random samples) between two z* statistics calculated in a
gsingle sample from a trivariate-normal ;bpulation with population corre-
lations p,,, Py,, and 0, (where variable 1 is the criterion measure and
variables 2 and 3 are predictor variables) 1s given by

2 2 2 _ a2 _5?
p(z% ,72% ) = Py =Py, = P13 - (Py,P3(2 - Py, = 0y oz;llig (271
1277 (1-02)0-0p2)

- 45 -




(Dunn and Clark, 1969). Thus, a large-sample estimate of the covariance
between z¥, and z* values calculated in the same sample is provided by
inserting iarge-sample estimates of 0,,, 0,,, and p,, on the right side
of Equation 27 and multiplying the resulting value by 1/(N~3), the
product of the asymptotic standard deviations of two z* statistics cal-
culated in a sample of size N.

Using the preceding asymptotic result, a large-sample estimate of
the varlance-covariance matrix among the z* values in the vector z was
generated. First, each element of the matrix that represented a covari-
ance between two z* statistics computed in two independent samples rath-
er than the same sample (i.e., the covariance between a z* statistic
from the WK-AR group and a z* statistic from the AR-WK group) was set
equal to zero. These are "known" covariance values. Then, the "un-
known"” within-group covariances were estimated using Equation 27 and the
sampling variances on the diagonal were set equal to 1/(231-3) for z*
statistics computed in the WK-AR group and 1/(221-3) for z* statistics
computed in the AR-WK group. Thus, the 20 x 20 estimated variance-
covariance matrix among the sample z* statistics for single tests con-
tained 20 known variance elements, 190 known between-group covariance
elements, and 190 estimated within-group covariance elements.

If the estimgted variance-covariance matrix among the elements of z
is designated as Ez, a large-sample estimate of the variance-covariance
matrix among a set of linear combinations of the elements of z 1is given
by

1>

=w’

£ M, (28]

[

where the columns of W contain the fixed (over samples) coefficients for
the linear combinations. Subsets of the 19 coded (contrast coefficient)
vectors described previously were used to define various W matrices.

For example, in connection with the overall test of the main effect of
TSSM, the first four vectors among the set of 19 coded vectors in Table
6 were rescaled (divided by 4) and the rescaled vectors were used to
define a W matrix with 20 rows and 4 columns. In this case, the result-
ing gc was a large—sample estimate of the variance-covariance matrix,
over random sampleg, among the four contrasts associated with TSSM. In
a similar manner, Zc matrices were constructed to be used in connection
with significance tests of the main effects of Item Type and Order and
also for the various interactions of the three independent variables.

If the mean population z* value (over levels of Item Type and Or-
der) for BAYES is equal to the mean population Ef value for ASVAB/N,
then the population value of the contrast defined by the first vector in
Table 6 1s zero. Similarly, if the mean population z* value for STMI is
equal to the mean population z* value for ASVAB/N, the population value
of the contrast defined by the second coded vector is zero. The same
holds for the contrasts defined by the third and fourth coded vectors if

- 46 -




ASVAB/B and ASVAB/M have mean population z* values equal to that of
ASVAB/N. Thus, a test of the hypothesis that the means (over levels of
Item Type and Order) of the population z* values for all five TSSM com~
binations are equal 1s equivalent to a test of the hypothesis that the
population values of the contrasts defined by the first four coded vec-
tors in Table 5 are simultaneously equal to zero.

Test statistics. Sympson (in preparation) demonstrates that p-
element vectors of contrasts among sample z* statistics are asymptoti-
cally distributed p~variate normal with expectation equal to the corre-
sponding vector of contrasts among the population z* gtatistics (i.e.,
the sample vector is asymptotically unbiased as an estimate of the popu-
lation vector). 1If the sample contrast vector W’z, which is 4 x 1 in
the case of the four contrasts associated with TSSM, is distributed (ap-
proximately) p-variate normal over random samples with expectation equal
to the p-element null vector and variance~covariance matrix gc, the sta-
tistic

W'2)'Z ' (W) [29)

is distributed (approximately) as x? with p degrees of freedom (Rao,
1973, p. 524). Now consider the statistic

1 ~

5, = W'z £70 W), [30]

where a consistent estimate of L. replaces the population variance-
covariance matrix among the contrasts. _Since Zc approaches L. as the
number of observations associated with Ec increases, the asymptotic dis-

tribution of S, is also X° with p degrees of freedom.

Sympson (in preparation) shows that for large samples the asymp-
totic sampling distribution of any monotone transformation of S, can be

approximated using a.. identical transformation of Hotelling's T? statis-
tic (Rao, 1973, p. 541). This fact suggests the possibility of using as
a test statistic some transformation of S, that corresponds to a previ-
ously derived transformation of T?. For example, in situations where
all the elements .f Y, are unknown but are estimated using a single
large sample, the test statistic

s, = [(8 - p)/(N - DDIIS,/p] , (31

where N Is the number of {ndividuals in the sample and p is the number
of contrasts involved, can be assumed to follow (approximately) the F
distribution with p and (N-p) degrees of freedom (Morrisom, 1967, p.
120).

The situation in this research is somewhat more complex in that ﬁz
contained both known and unknown elements, and the unknown elements were
estimated in two groups of slightly different size (N = 221 and N =
231). As a result, 1t 1s not obvious what should be the exact degrees
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of freedom assoclated with Ec' whose elements are linear combinations of
the 210 known and 190 unknown elements of %,. Since for large values of
N the value of S, and the value of F[p, (N-p), 1 - @], where the latter
quantity is the 100(l - a)Z% point of an F distribution with p and (N -
p) degrees of freedom, are not mugh influenced by small changes in N, it
was decided to proceed as though L. had degrees of freedom equal to (221
+ 231)/2. Thus, the statistic S, was treated as having p and (226 - p)
degrees of freedom. For each major hypothesis of interest, this ap-
proach provided a slightly more conservative test (i.e., lower probabil-
ity of Type I error) than would be obtained by referring the statistic
S, to the x? distribution with p degrees of freedom.

Thus, to recapitulate, in the case of the significance test for the
main effect of TSSM, the matrix W was created from the first four vec-
tors in Table 6. These vectors were rescaled by dividing the elements
of each vector by the number of +1 values in the vector (i.e., 4).

Then, the sample contrast vector W’z and the estimated variance-covari-
ance matrix Zc W Zzw were computed. Finally, a value of the statistic
S, was computed and entered into Equation 31 with N = 226 and p = 4. It
was assumed that the resulting value of S_ would follow (approximately)
the F distribution with 4 and 222 degrees of freedom if all four popula-
tion contrasts were equal to zero. A computer program was used to de-—
termine the probability of observing an F statistic as large or larger
than S2 if the null hypothesis were true. If this probability was less
than or equal to .05, the main effect for TSSM was declared statistical-
ly significant.

Similar procedures were followed for testing the main effect of

Item Type and Order and for testing the various interactions among the
three independent variables. For each such test, the matrix W was de-
fined using the appropriate set o (rescaled) vectors from Table 6 and
the value of p in Equation 31 was set equal to the number of columns in
W. If the probability of the obtained S, value was less than or equal
to .05, the null hypothesis of no main effect or no interaction effect
was rejected.

A posteriori significance tests. Following tests of the major hy-
potheses of interest (overall main effect and interaction tests), one-
degree-of-freedom a posteriori significance tests were conducted. This
was done by testing each of the individual contrasts originally asso-
ciated with a significant major hypothesis, and also the set of con-
trasts obtalned by taking pairwise differences among the original con-
trasts. For example, since the main effect for TSSM was found to be
statistically significant, each of the four contrasts originally asso-
clated with the overall main-effect test was examined. For each of the
original contrasts, a new matrix W was defined that contained only the
rescaled coefficients from that contrast's column in Table 6. Then,
values of ZC, S., and S, were computed using W, z, and i7. (Note that
since p = 1, S1 = 82 in this case.) Each of the contrasts defined by
rescaling the coefficients in columns 1, 2, 3, and 4 of Table 6 was
tested individually in this manner.
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Next, six new vectors of contrast coefficients were generated by
taking pairwise differences among the first four vectors in Table 6.
For example, the palrwise difference between the first and second col-
umns of Table 6 generated a contrast coefficient vector with the ele-
ments 1, 1, 1, 1, -1, -1, -1, -1, ... (12 zeroes). This coefficient
vector, after rescaling, was used to define a new W and a test was con-
ducted of the hypothesis that the mean population z* value for BAYES was
equal to the mean population z* value for STMI. Similar tests were con-
ducted for the five remaining contrasts obtained by computing pairwise
dif ferences among the original contrast coefficient vectors. Testing
the four contrasts defined by the first four rescaled columns of Table 6
and the six contrasts obtained by taking pairwise differences among
these four columns gave a total of 10 single-degree—of-freedom a poster-
iori tests that were conducted following the significant overall test of
the main effect of TSSM. These a posteriori tests systematically con-
trasted all possible pairings of the five TSSM combinations.

A similar a posteriori test procedure was followed after obtaining
a significant result in the overall 3-way interaction test. 1In this
case, each of the contrasts defined by the last four (rescaled) columns
in Table 6 was tested individually, as were the six contrasts obtained
by taking pairwise differences among these columns.

Whenever a set of a posteriori tests was executed following a sig-
nificant major hypothesis test, the individual contrasts were not de-
clared to be significantly different from zero unless the probability of

: the observed value of S, for that contrast was less than or equal to .05
| di -ided by the number of a posteriori tests in the set. Thus, in order
for one of the individual TSSM main-effect contrasts or one of the
three~way interaction contrasts to be declared significant, its proba-
bility under the null hypothesis had to be less than or equal to .05/10
= aOOSo

The technique of testing individual contrasts at reduced Type I
error (alpha) levels that was used here has been referred to in the sta-
tistical literature as Dunn's procedure and/or the Bonferroni test pro-
cedure (e.g., Kirk, 1968, p. 79) and, in the case of pairwise contrasts
among marginal means in an ANOVA, Fisher's modified least-significant-
difference (modified LSD) approach (e.g., Winer, 1971, p. 199). The
ma jor advantages of this approach are that the contrasts tested need not
be orthogonal, the statistics involved need not be based on equal sample
sizes, and the Type I error rate for the set of contrasts is less than
or equal to the overall alpha level set by the experimenter (e.g., .05). !

Validities for Composites

The statistical inference procedures described previously in con- i
nection with the analysis of single-test validities were also used in
the analysis of composite (AR+WK) test validities. Two types of compos-
ites were studied: fixed-weight composites and optimally-weighted com-
posites. Fixed-weight-composite scores were obtained by computing the
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mean of the AR and WK test scores obtained by an individual under each
TSSM. Optimally-weighted-composite scores were obtained by computing

under each TSSM the least-squares multiple linear regression estimate

(Draper & Smith, 1966) of each individual's criterion score using the

individual's AR and WK scores as predictors.

The computation of composite scores collapsed AR and WK scores into
a single variable; therefore, the three-way cross-classification shown
in Figure 2 became a two-way cross—-clagsification. Morcover, since each
composite score was based on one test that was administered before the
S-minute break and one test that was administered after the break, the
earlier concept of order of administration (first half of testing ses-
sion versus second half) was no longer applicable. Instead, the second
independent variable in the analysis of composite validities was Content
Order (AR test before WK test or vice~versa). The cell codes assigned
in the two-way cross-classification of composite scores are shown in
Table 7. Assoclated contrast coefficient vectors appear in Table 8.

Table 7
Cell Codes in Two-Way
Cross—-Classification for
Composite-Score Validities

Content Order
TSSM AR-WK WK-AR

BAYES
STMI
ASVAB/B
ASVAB/M
ASVAB/N

O~V
SN

As mentioned earlier, Content Order in the two-way cross-classifi-
cation is logically related to the Item Type by Order two-way Iinterac-
tion in the three-way cross-classification for single-test validities.
This relationship becomes apparent from examination of the fifteenth
coded vector in Table 6, which shows that the contrast defined by this
vector adds z* statistics obtained from AR tests given before the 5-
minute break together with z* statistics obtained from WK tests given
after the break, then contrasts the resulting sum with the sum of z*
statistics obtained from WK tests given before the break and AR tests
given after the break. The sign of the observed sample contrast indi-
cates which content order (AR-WK or WK-AR) resulted in the largest mean
2z* value for single tests.

The Content Order main-effect contrast for the two-way analyses
(the fifth coded vector in Table 8) generates a similar statistic based
on composite~score validities. Note that the fifteenth coded vector in
Table 6 and the fifth coded vector in Table 8 define the only between-
groups contrasts in these two tables. As mentioned earlier, hypothesis
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tests assoclated with these contrasts will usually be less sensitive to
the presence of real population effects than tests that are based on
within-group contrasts. Note also that as a result of the relationship
between the Content Order main effect in the two-way analyses and the
Item Type by Order two-way interaction in the three-way analysis, a re-
lationship also exists between the TSSM by Content Order two-way inter-
action in the two—way analyses and the TSSM by Item Type by Order three-
way interaction in the analysis of single-test validities.

Table 8
Coded Vectors for Linear-Model Analyses
of Composite-Score Validities

TSSM by
Cell Content Content
Code* TSSM Order Order
1 1 0 0 O 1 1 0 0 O
2 1 0 0 O -1 -1 0 0 O
3 01 0 O 1 01 0 O
4 01 0 O -1 0-1 0 0O
5 0 01 0O 1 0O 0 1 O
6 0 01 o -1 0 0-1 O
7 0O 0 01 1 0 0 0 1
8 0O 0 0 1 -1 0 0 0-1
9 -1 -1 -1 -1 1 -1 -1-1-1
10 -1 -1 -1 -1 -1 11 11

*See Table 7 for definition of cell
codes.

Fixed-weight composites. The linear-model analysis for fixed-
welght composites was conducted in exactly the same manner as the analy-
sis for single-test validities. Since fixed weights do not vary over
samples, a composite formed using prespecified weights can be treated as
a new predictor varlable, and any validity coefficient obtained for the
composite can be treated as though it were a "single-test” validity.
Thus, after computing the sample correlation matrix among fixed-weight-
composite scores and the validities of these scores with respect to the
end-of-course criterion, large-sample estimates of the correlations
(over samples) among z* transformations of the validitles were generated
using Equation 27. These correlations were then transformed to covari-
ances by multiplying by 1/(N-3) within each group (the AR-WK and WK—-AR
groups) and the estimated within-group covariances were used, along with
the known between-group covariances of zero and the known sampling vari-
ances of 1/(N-3), to construct a large-sample estimate of the variance-
covariance matrix among z* statistics derived from the fixed-weight com-
posites.

Given the matrix 22, hypothesis tests regarding the effects of
TSSM, Content Order, and their two-way interaction were conducted by
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selecting appropriate sets of coded vectors from Table 8, rescaling the
vectors, forming different W matrices depending on the hypothesis being
tested, computing Equation 28 for each hypothesis test, and then comput-
ing the values of S, and S, (Equations 30 and 31) for each hypothesis
test. If the probability of an observed S, value was less than or equal
to .05 under the associated null hypothesis, that hypothesis was rejec-
ted. After observing a significant S, value, single-degree-of-freedom
contrasts were generated and tested in the manner that was described
earlier in connection with the analysis of single-test validities.

Optimally-weighted composites. The linear-model analysis for opti-
mally-weighted composites proceeded in a somewhat different fashion than
that for fixed-weight composites. Since the weights obtained in least-
squares prediction vary over random samples from a population of indi-
viduals, optimally-weighted-composite scores obtained in any one sample
cannot be treated as if they were predictor scores drawn from a bivari-
ate population of predictor and criterion scores. Individuals' optimal~-
ly-weighted-composite scores depend not only on their test performance
but also on the particular random sample of individuals in which they
happen to be imbedded. If t» same individual were observed as a member
of a different sample, the pecrson's composite score would change due to
the use of new “optimal” weights derived in the second sample. This may
be contrasted with the situation where fixed-weight-composite scores are
generated. In that case, the combining weights do not vary over samples
and an individual's composite score remains the same regardless of the
sample in which the person is imbedded. Thus, in the case of a fixed-
weight composite, an observed sample of individuals can be treated as a
random sample from a bivariate population of predictor and criterion
scores.

The objective of the analysis of optimally-weighted-composite
scores was to determine whether TSSM, Content Order, and/or their inter-
action had a significant effect on the level of predictive validity of
these composites. The population validity of an optimally-weighted com-
posite is indexed by the population multiple correlation R. Consider
the population contrast

k

¥ = £ wR?, (32]
4o i1

where Ri is the population squared multiple correlation obtained under
the ith "condition” (e.g., a particular TSSM in conjunction with a par-
ticular Content Order), w; is a contrast coefficient specified for con-
dition 1, and

(33]

N~
g
]
(=]

i=1

Sympson (in preparation) shows that whenever individuals are assigned to
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between-group conditions at random and then observed under each possible
within-group condition, the population contrast

k ~
= I wlo®(y -y,)] [34]
=1 i i

is equal to zero whenever the corresponding contrast ¥ 1s equal to zero.
In Equation 34, o? (y - y ) is the population residual variance in y, the
criterion variable, given that yl, the population least-squares regres-—
sion estimate of y under condition i, has been partialled from y. Thus,
in order to test the hypothegis Y = 0 for any Y of interest, it is suf-
ficient to test the hypothesis I = O which corresponds to that VY.
Sympson (in preparation) also shows that an unbiased estimate of T is
given by

.k K SSE,
'= ZwMSE, = Zvw, {v———=) ., [35]
=1 b g P\Np ool

where MSE; is the unblased sample mean-square-error of estimate under

condition 1 and p; is the number of predictors under condition i.

Sympson (1979) has indicated that a large-sample estimate of the
sampling variance of an MSE is provided by

2[MSEi]2/(Ni - 1) [36]

Py

and that a large—sample estimate of the sampling covariance of two MSEs
computed in the same sample is provided by

2[MSE1][MSEj]

r(el, eJ?) [37]

;5 -~
[N, - p, - DN, = p, - D]

i~ P

In Equation 37, r(ei, e%) is the sample product-moment correlation be-
tween the squared errors of estimate observed under condition i and the
squared errors of estimate observed under condition j. Of course, if
two MSEs are computed in independent samples, and not in the same sam-
ple, their sampling covariance is known to be zero and need not be esti-
mated. (Sympson, in preparation, derives a better asymptotic estimate
of the covariance between two MSEs, but Equation 37 was used here.)

Using Equations 36 and 37, a large—sample estimate of the variance-
covariance matrix among the sample MSEs was constructed. There were k =
10 MSEs of interest, one for each cell in the two-way classification
ghown in Table 7. Thus, a 10 x 10 estimated variance-covariance matrix,
EM' containing 50 known between-group covariance elements (zeroes), 40
estimated within-group covariance elements, and 10 estimated sampling
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varlances was constructed. The sample MSE values themselves were
arrayed in a l0-element vector, m, in the order of the cell codes shown
in Table 7.

Sympson (in preparation) shows that k-element vectors of sample MSE
values are asymptotically distributed k-variate normal with expectation
equal to the corresponding vector of population residual variances.
Thus, p-element sample contrast vectors of the type
f=u'm

’ [38]
where W contains a k-element vector of contrast coefficients in each of
its p columns, will be asymptotically distributed p-variate normal with
expectation equal to the corresponding population contrast vector (Bock,
1975, p. 141). Moreover, assuming Z is a consistent estimate of the
variance-covariance matrix Zy, the matrix

~

= WLl [39]

5
~ ~M~

[

provides a consistent estimate of the variance-covariance matrix among
the sample contrasts.

The preceding results allow use of the statistics S, and S, de-
scribed earlier (Equations 30 and 31) to test joint null hypotheses for
sets of contrasts among residual variances. In computing the sample
statistic S, (Equation 30), 2c is as defined above and the vector m re-
places the vector z. 1In computing s, (Equation 31), a value for N, the
degrees of freedom associated with §., must be specified. W was defined
for each major hypothesis of interest by selecting the appropriate set
of p contrast-coefficient vectors from Table 8 and rescaling them as
before. The value of N was set equal to 223 and the hypothesis that the
p population contrasts were simultaneously equal to zero was rejected if
the obtained value of S, exceeded the 95th percentile of the F distribu-
tion with p and (223-p) degrees of freedom. The main effects of TSSM
and Content Order, and the interaction of these two independent vari-
ables, w._re each tested in this fashion.

In the linear-model analysis for optimally-weighted composites, 223
degrees of freedom were assumed for the matrix L. since each MSE value
was the mean of efther 231 or 221 squared residuals (hence, approximate-
ly 226) and three parameters (an intercept and two slope coefficients)
were estimated in order to obtain each MSE value. As noted earlier, the
computed value of S, and the indicated critical value of S, will change
only slightly as a result of small changes in N when the value of N is
this large. Hence, the particular value assumed for the degrees-of-
freedom parameter was not deemed a crucial consideration in this appli-
cation.

Pre-enligtment ASVAB composites. As noted previously, pre-enlist-
ment scores on five Air Force ASVAB composites (Mechanical, Administra-
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tive, General-Technical, Electronics, and AFQT) were available for 406
of the individuals in Subgroup 4 (see Table 4). For each of these ASVAB
composites, criterion-related validity correlations were computed in the
WK~AR group (N = 206), the AR-WK group (N = 200), and the Total group (N
= 406) making up Subgroup 5. Validities for the experimental TSSM com-
posites were also calculated in these three groups.

Effect of Limiting Boundary Values on the Validity of Maximum Likelihood
Ability Estimates

Before proceeding with the various linear model analyses in this
research, another issue had to be addressed. Since choice of a proce-
dure for dealing with "out-of-bounds” maximum likelihood ability esti-
mates can influence the correlation of such estimates with other vari-
ables, it was important to explore the effect on test validity of vari-
ous methods for dealing with out-of-bounds cases. To this end, TSSM
validity coefficients were computed under three different conditions.
First, separate validities were calculated for the WK-AR and AR-WK
groups in Subgroup 4 using the original limiting boundary values (*5.00)
that had been imposed during the data collection process. Within each
group, validity coefficients were computed for STMI AR at 20 items, STMI
WK at 30 items, ASVAB/M AR, ASVAB/M WK, the fixed-weight STMI composite
(AR+WK), and the fixed-weight ASVAB/M composite (AR+WK). Thus, 12 va-
lidity coefficients were computed using the original limiting bound-
aries.

Next, the same 12 validity coefficients were computed using only
those members of Subgroup 4 who obtained "in-bounds” maximum likelihood
ability estimates in STMI AR (at 20 items), STMI WK (at 30 items),
ASVAB/M AR, and ASVAB/M WK. The resulting validity coefficients were
based on 201 cases in the AR-WK group and 208 cases in the WK-AR group.
Finally, the same 12 validities were computed with all out-of-bounds
estimates set equal to new limiting values that were selected to be ap-
proximately .30 ability unit more extreme (more deviant from the mean
ability estimate) than the most extreme in-bounds estimates obtained on
a given test. The revised boundaries were -4.10 and 2.70 for STMI AR,
~2.80 and 2.90 for STMI WK, -5.20 and 2.40 for ASVAB/M AR, and -4.40 and
3.10 for ASVAB/M WK. The validities computed using these boundaries
were based on the same number of cases as the validities computed with
the original boundaries (231 cases in the WK-AR group and 221 cases in
the AR-WK group).

The revised boundaries just described are quasi-empirica'-Bayes
ability estimates in the sense that they were selected to be "not too
distant” from the most extreme in-bounds estimates observed in the ex-
perimental samples. Another possible approach would be to determine a
priori the lowest and highest finite 6 values that could be obtained
from a particular test and then set boundary values "not too distant”
from these finite extremes. To the extent that the most extreme in-
bounds estimates obtained in an empirical sample approximate the most
extreme finite § values obtainable from a particular test, the quasi-
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empirical-Bayes method for selecting boundaries used here and the a
priori method based on maximally deviant finite 8 values will be equiva-
lent. Another method for dealing with response vectors that generate
infinite 6 values has been proposed by Samejima (1980, pp. 83-97).

Intercorrelations Between AR and WK Tests

During the data analysis, it was observed that product-moment cor-
relations between AR and WK single-test scores were lower for the two
adaptive testing strategies than for the ASVAB TSSMs. The statistical
significance of differences among these correlations was examined using |
an asymptotic test gtatistic described by Dunn and Clack (their so-
called "Best” test; 1969). For each difference tested, a large-sample
estimate of the correlation (over random samples) between the correla-
tion coefficients contrasted was computed using Dunn and Clark's Equa-
tion 9. The resulting large-sample estimates were then used in comput-
ing the asymptotic test statistics. This set of significance tests was
based on all 452 individuals in Subgroup 4.

RESULTS

Preliminary Results

Fill-In Analysis i

Figure 3 shows distributions of the number of items filled in dur-
ing an examinee's second adaptive AR test (Figure 3a) and second adap-
tive WK test (Figure 3b). Each of these distributions is based on the
452 examinees in Subgroup 4. For the AR test, the minimum number of
items filled in was 0, the maximum was 23, the mean was 4.39, and the
mode was 3 out of the 25 items selected. For the WK test, the minimum
number of items filled in was again O, the maximum was 31, the mean was
4.50 and the mode was 4 items out of the 35 items selected. On the av-
erage, about 85% of the items selected in each second adaptive test were
identical with those administered in the first test. These data indi- ¥
cate, therefore, that the two adaptive testing strategies—-BAYES and
STMI--generally selected the same items.

Nonconverged and Qut-of-Bounds Maximum Likelihood Estimates

Figure 4 shows the percent of cases in Subgroup 4 with nonconverged
ability estimates at each stage in the two STMI tests. Each test shows
a high percentage of nonconvergences during the early stages of the test
due to the coanstraints imposed on the number of maximum likelihood iter-
ations. In both tests, the percentage of nonconvergences dropped rapid- |
ly to less than 5% of the examinees for tests of nine items or more. !
For the AR test, there were one or two nonconvergences for tests of 20 '
and 25 {tems in length, but for the WK test there were no nonconver-
gences for test lengths of more than 15 items.
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Figure 3
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Figure &4 :
Percent of Examinees with Nonconverged Ability Estimates :
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Figure 5 shows the number of out—of~bounds cases in Subgroup 4 at
each stage of the STMI AR test. All such cases were at the lower bound-
ary of ~5. There were no out-of-bounds estimates at any test length in
STMI WK. The figure shows an initial increase at item 3. Before this
point in the test, the constraints imposed on the maximum likelihood
iterations prevented any ability estimates from reaching either bound-
ary. After the third item, typically only one or two cases among the
452 in this subgroup were out of bounds.

Figure 5
Number of Examinees with 6 of -5.0 at Each Stage
of the STMI AR Test (Total N=452)

Number of Examinees
&
i

0 T 2 g T T 1
0 5 10 15 20 25
Number of Items Administered

Table 9 shows the relative frequency of high and low out-of-bounds
maximum likelihood ability estimates obtained in Subgroups 1 and 2 for
the STMI AR tegt at 20 items, the STMI WK test at 30 items, and the
ASVAB/M tests. As the data in Table 9 show, the relative frequency of
out-of-bounds cases was 0 for the STMI WK test and was less than 1% in
one instance for the STMI AR test. For the ASVAB/M AR test, the per-
centage of out-of-bounds cases varied from 2.9% to 4.9%. For the
ASVAB/M WK test the percentage of out—-of-bounds cases varied from less
than 1% to 2.8%. Thus, for the adaptive tests, there were very few out-
of-bounds cases in comparison to the conventional ASVAB tests scored by
maximum likelihood.

Effect of Variable Entry

Figure 6 shows the correlations of ability estimates calculated
after each item was administered with final ability estimates, separate-
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Table 9
Relative Frequency in WK-AR and AR-WK Groups of
i Out-of-Bounds Low (8 = -5.0) and High (5 = 5.0)
Maximum Likel{hood Ability Estimates

AR WK
Test Group Low High Low  High

STMI WK-AR 2/245 0/245 0/247 0/247
AR-WK 0/243 0/243 0/245 0/245
ASVAB/M  WK-AR 10/245 7/245 1/247 77247
AR-WK 8/243 12/243  1/245 3/245

ly for the BAYES and STMI AR and WK tests. As the data show, for BAYES
(Figure 6a and 6b), and STMI WK (Figure 6d) the correlations of interim
ability estimates with final ability estimates were similar for the
fixed-entry and variable-entry conditions. In both cases, there was a
tendency for the fixed-entry condition to have slightly lower correla-
tions with final score through test lengths of about 15 to 20 items, but
the differences were not very large. A different pattern emerged for
the STMI AR test (Figure 6c). Contrary to the results for the other
three tests, the correlations of interim ability estimates with final
ability estimates were higher for the fixed-entry condition than for the
variable-entry condition, and the differences were substantially larger.

Examinee Response Time

Table 10 gives summary statistics for MERT on the ASVAB, BAYES, and
STMI tests in Subgroups 1 and 2. Figure 7 shows MERT relative frequency
distributions for the three AR tests, and Figure 8 shows relative fre-
quency distributions for the WK tests. The MERT distributions for the
two adaptive tests were quite similar, since about 85% of the items se-
lected were common to the two tests. As the data show, MERT for the
ASVAB tests was shorter, on the average, than was MERT for the adaptive
tests. For ASVAB AR, mean MERT was about 50 seconds, while the mean
MERT for BAYES and STMI was about 68 seconds. Mean MERT for the ASVAB
WK tests was about 10 seconds, whereas for the two adaptive WK tests
mean MERT was about 14 seconds per item. Mean MERT was consistently 2
to 3 seconds less after the 5-minute break than before the break.

Computer Response Time

Table 11 provides summary statistics for MCRT for ASVAB, and Table
12 provides similar data for the two adaptive tests. Frequency distri-
butions of MCRT for the three testing strategies are presented in Figure
9, separately for the AR and WK tests. As Table 11 shows, MCRT for the
ASVAB had a mode of less than one second per item, with most of the
MCRTs less than 1.5 seconds for WK tests (Figure 9c), and less than
about 3 seconds for the AR test (Figure 9a). By contrast, the modal
MCRT for the BAYES adaptive test (Table 12) was about 3.3 seconds for
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Table 10
Summary Statistics for Mean Examinee Response
Time Distributions for ASVAB, BAYES, and
STMI Tests with AR and WK Items,
for WK-AR and AR-WK Groups

AR (Subgroup 1) WK (Subgroup 2)
TSSM and WK-AR AR-WK AR-WK WK-AR
Statistic (N=245) (N=243) (N=245) (N=247)

‘.
| ASVAB |
!

Mean 48.739 51.004 9.734 11.676
S. D. 21.168 18.780 3.942 5.249
Skew 1.017 977 2.445 1.742
Kurtosis 1.652 1.100 12.087 5.168
Minimum 10.200 12.410 3.533 4.087
Maximum 135.350 115.520 37.683 38.733
BAYES
Mean 66.996 69.475 12.936 15.016
S. D. 29.219 28.847 4.247 5.221
Skew 1.383 1.111 1.795 1.501
Kurtosis 4.036 1.849 7.785 3.609
Minimum 17.156 19.472 5.746 6.054
Max1imum 224.796 194.848 41.283 40.351
STMI
Mean 66.863 70.094 13.062 15.271 R
S. D. 29.787 28.904 4.319 5.373
Skew 1.689 1.003 1.698 1.503
Kurtosis 6.158 1.448 6.700 3.626
Minimum 13.384 19.472 5.886 6.360

Maximum 246.724 192,916 40.851 40.814 !

Table 11 )
Summary Statistics for Mean Computer Response Time
Distributions for ASVAB with AR and WK Items,
for Adaptive-Test Order Groups

AR (Subgroup 1) WK (Subgroup 2)

Statistic Group 1 Group 2 Group 1 Group 2
N 244 244 246 246
Mode .897 .890 +826 .830
Minimum .775 . 745 .633 627
252 .805 .791 682 676
50% 1.333 1.158 +864 .852
5% 3.160 2.569 1.354 1.126
90% 6.269 4,706 2.851 1.847

Note. Group 1, BAYES administered before STMI;
Group 2, STMI administered before BAYES.
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Figure 7 _
Frequency Distributions of Mean Examinee Response Time per Item
in ASVAB, BAYES, and STMI AR Tests

——— WK-AR Group (N=245) —=—= AR-WK Group (N=243)
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Figure 8

Frequency Distributions of Mean Examinee Response Time per Item
in ASVAB, BAYES, and STMI WK Tests

——— WK-AR Group (N=247) —~—=— AR-WK Group (N=245)
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both AR and WK, with 50% of the cases requiring at least 3.5 seconds of
computer time for a WK response and 4.4 seconds for an AR response (Fig-
ures 9d and 9b). The results for the STMI tests were much more similar
to that of the ASVAB tests, with modes of slightly more than 1 second.
As Figure 9 shows, the distributions of MCRT for STMI had substantial
overlap with those for the ASVAB test, while the MCRT for BAYES had very
little overlap with that of the ASVAB or STMI tests.

Table 12
Summary Statistics for Mean Computer Response Time
Distributions for BAYES and STMI Adaptive Tests
with AR and WK Items

E

AR (Subgroup 1) WK (Subgroup 2)

Statistic BAYES®  STMIP BAYES®  STMIP

N 244 244 246 246

Mode 3.299 1.287 3.276  1.119

Minimum 2.936 964 2.894 .866

25% 3.390 1.260 3.245 .890

50% 4.364 1.711 3.499  1.210

75% 5.999 3.215 4.556  1.618

90% 8.895 5.300 5.455  2.409

ABAYES administered before STMI.
STMI administered before BAYES.

Characteristics of Test Scores

Distributions

ASVAB number correct. Table 13 shows summary statistics for ASVAB
number-correct score distributions for the AR and WK subtests in Sub-
groups 1 and 2; Figure 10 shows the frequency distributions for these
subtests. As the data snow, neither test was difficult for the group
tested. For the AR test, the mean score was about 13, with a substan-
tial portion of the examinees obtaining scores of 15 or more on the 20-
item test (Figure 10a). The ASVAB WK test was even easier. On this
test, the mean score was over 22, with a large portion of the examinees
obtaining scores between 22 and the maximum score of 30 (Figure 10b).

IRT ability estimates. Table 13 also provides summary statistics
for the IRT ability estimates derived from rescoring of the ASVAB by
Bayesian and maximum likelihood methods (ASVAB/B and ASVAB/M), and for ‘
the BAYES and STMI adaptive tests. Frequency distributions for the AR I
tests are in Figure 11, and for the WK tests in Figure 12. Cases with
out-of-bounds maximum likelfhood estimates are not shown in these fig-
ures. For the AR data, mean ability estimates were about -.7 for ;
ASVAR/B and -.4 for ASVAB/M. BAYES resulted in a mean ability estimate
for AR of about -.5 and STMI about ~-.4. Thus, the mean ability levels
resulting from all four tests were similar and the data indicate that
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Table 13
Summary Statistics for ASVAB/N, ASVAB/B, ASVAB/M, BAYES,
and STMI Score Distributions with AR and WK Items,
for WK-AR and AR-WK Groups

AR (Subgroup 1) WK (Subgroup 2)
TSSM and WK-AR AR-WK AR-WK WK-AR
Statistic (N=245) (N=243) (N=245) (N=247)
]
ASVAB/N
Mean 12.922 13.416 22.478 22.397
S. D. 3.857 3.997 4,780 4,598
Skew -.151 -.315 -.578 -.531
Kurtosis -.569 -.606 -.059 -.182
Minimum " 2.000 3.000 5.000 8.000
Maximum 20.000 20.000 30.000 30.000
ASVAB/B
Mean -.776 -.609 -.199 -.245
S. D. 1.527 1.557 1.228 1.187
Skew -.264 ~.217 -.738 -.610
Kurtosis -.046 -.302 1.088 .950
Minimum -5.095 -4.712 -5.248 ~4.799
Maximum 2.387 2.387 2.200 2.200
ASVAB/M* ’
Mean -.536 ~.328 -.067 -.078
S. D. 1.830 1.938 1.314 1.388
Skew -.104 247 .051 794 !
Kurtosis 1.987 1.782 2.994 4,218
Minimum -5.000 -5.000 -5.000 -5.000
Maximum 5.000 5.000 5.000 5.000
BAYES i
Mean -.585 ~-.463 -.182 -.190
S. D. 1.048 1.135 .916 .869 5
Skew -.248 ~.545 -.021 -.161
Kurtosis -.276 .038 -.072 .307 '
Minimum -3.154  -3.899 -2.542  -2.621 :
Maximum 2.398 2.077 2.540 2,251 |
STMI*
Mean -.529 ~.357 -.154 -.178
S. D. 1.158 1.093 .919 .871
Skew -.892 ~.632 -.003 -.063
Kurtosis 1.466 525 -.128 .036
Minimum -5.000 -3.814 -2.496 -2.393
Maximum 2.420 1.996 2.548 2.126
*Original boundaries were used for maximum likelihood )
egtimates. j
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Figure 10
Frequency Distributions of ASVAB AR and WK Number-Correct
Scores for WK-AR and AR~-WK Groups
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the average ability estimate for the experimental group was about one-
half standard deviation below that of the group in which the AR items
were normed. There were, however, differences in the distributions of
the AR ability estimates for the four TSSMs (Figure 11). The most
peaked of the distributions resulted from ASVAB/M. ASVAB/B provided the
least peaked distributions. The BAYES and STMI distributions were more
nearly normal than the ASVAB distributions. The upper 1limit of the
range of ability estimates was similar for the four TSSMs. However, the
ASVAB IRT ability estimates contained a larger proportion of very low
values (below -4.0).

Similar results were observed for the WK items (Table 13 and Figure
12). Mean ability estimates for ASVAB/B were about -.20, while for
ASVAB/M the mean ability estimate was -.07. The two adaptive tests re-
sulted in mean ability estimates closer to that of ASVAB/B than ASVAB/M.
STMI resulted in the most peaked ability distribution, and the two ASVAB
distributions were less peaked than the two adaptive test distributions.
Again, IRT scoring of ASVAB produced more very low estimates. Since the
true ability of each individual in the examinee group was, of course,
unknown, it was not possible to determine which of the TSSMs resulted in
estimated ability distributions which most closely approximated the un-
derlying true ability distributions.

Correlations

Table 14 shows Pearson product-moment correlations among scores
from the five TSSMs, separately for the AR and WK tests, in Subgroups 1
and 2. As expected, the data for both the AR and WK items show high
correlations between ability estimates derived from BAYES and STMI, due
to the fill-in procedure used in administration of the two adaptive
tests. For both AR and WK items, correlations between scores on the
adaptive tests and the ASVAB were lower than were scores computed from
different ways of scoring the ASVAB, with a larger difference for the AR
items than for the WK items.

Information

Figure 13a shows the estimated score information functions obtained
for the STMI and BAYES AR adaptive tests and for ASVAB/N AR adjusted to
the same length (25 items) as the adaptive tests; Figure 13b shows esti-
mated score information functions for the two WK adaptive tests and for
the ASVAB/N WK test adjusted to the same length (35 items) as the adap-
tive tests. The figutes also show the maximum amount of information
availahle from each adaptive-test item pool when the k most informative
items at a 0 level are administered. The amount of information avail-
able from the k most informative items at a 0 level is an upper bound
for the score information function at that 0O level and provides a bench-
mark for evaluating the k-item experimental adaptive tests.

As Figure 13 shows, both of the fixed-entry adaptive tests measured
all levels of ability with considerably more precision (information)
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Table 14
Pearson Product-Moment Correlations Among
Test Scores, Separately for AR and WK Tests,
in Two Subgroups

Item Type and TSSM
TSSM 1 2 3 4 5
AR (Subgroup 1)
1. BAYES +922 .748 .713 747
2. STMI «958 .701 .670 .705
3. ASVAB/B .796 .792 .960 .969
4. ASVAB/M  .749 .749 <958 911

5. ASVAB/N .785 .778 .976 .916
WK (Subgroup 2)

1. BAYES 974 .833 794 .814
2. STMI «992 «826 .792 .810
3. ASVAB/B .841 .840 .948 .968
4. ASVAB/M  .816 .813 .970 .895

5. ASVAB/N .840 .836 .976 .935

Note. Original boundaries were used for maximum
likelihood estimates. For Subgroup 1,
WK-AR group (N = 245) above diagonal and
AR-WK group (N = 243) below diagonal.
For Subgroup 2, WK-AR group (N = 247)
above diagonal and AR-WK group (N =245)
below diagonal.

than did the ASVAB tests. For the AR tests (Figure 13a), the data show
that at the maximum point of information for ASVAB/N (0 = .3) the adap-
tive tests provided about 2.5 times as much information as a 25—-item
ASVAB test. This indicates that an ASVAB AR test would need to be about
63 items long (about 3.15 times as long as the actual ASVAB-7 AR sub-
test) in order to measure with the same precision as the experimental
adaptive tests at © = .3. Figure 13b shows similar results for the WK
tests. At the maximum level of ASVAB information (6 = .6) an ASVAB test
would require about 101 items (3.37 times the length of the actual
ASVAB-7 WK subtest) in order to measure as well as the 35-item experi-
mental WK adaptive tests. Thus, the two ASVAB subtests would have to be
lengthened by a factor of about 3.25 in order to approximate the level
of precision available frr 1 the adaptive tests at the point of maximum
information for the ASVAB tests.

Figure 13a indicates that for 9 levels below about +2.0, the STMI
test did slightly better at extracting information from the AR pool than
did BAYES. Similarly, Figure 13b indicates that STMI was able to ex-
tract somewhat more information from the WK item pool than BAYES at most
0 levels below about 6 = +3.0. These results are not entirely unexpect-
ed since the STMI strategy explicitly attempts to maximize test informa-
tion while the BAYES strategy does not.
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Figure 13

Score Information Functions for Fixed-Entry STMI and BAYES Tests,
an ASVAB-7 Test Adjusted to the Same Length as the Adaptive Tests,
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It should be noted that the score information curve for any test
that uses maximum likelihood estimates of 6§ will be influenced in the
extremes of O by the boundary values established for the maximum likeli-
hood estimator. The boundaries of 5.0 that were used in simulating the
STMI tests no doubt tended to depress the information functions for this
test at 6 levels below about -3.0 and above about +3.0.

Figure 14 shows estimated score information functions for three
ways of scoring the 20-item ASVAB AR test and the 30-item ASVAB WK test.
As the data in Figure 14 show, little additional information was gained
by scoring ASVAB by IRT methods. There were slightly larger gains for
the WK subtest (Figure 14b) than for the AR subtest (Figure l4a), par-
ticularly for 6 levels below about .20. For the AR subtest, differences
between scoring methods occurred in the 6 interval between O and 1.0.
Differences occurred for WK for all theta values less than about 1.0,
with very small differences above that value. Differences between
Bayesian and maximum likelihood scoring for the two ASVAB tests were not
substantial.

Validity

Single Tests

Validity as a function of test length. Sequential means, standard
deviations, and validities for the adaptive tests under both FE and VE
conditions are given in Appendix Tables A-1 to A-4. Figure 15 shows
validity correlations obtained in the FE condition as a function of test
length for the STMI and BAYES adaptive tests, and for ASVAB/N AR and WK
at their normal test lengths. As the data for the AR tests show (Figure
15a) validity of ASVAB/N was about .49 at 20 items. The validity for
STMI was .50 at that test length, but the validity for BAYES was about
.47. For WK items (Figure 15b) the validity of ASVAB/N at its 30-item
length was .29, which was equaled by BAYES, while STMI validity was
about .28.

Figure 15 and Appendix Tables A-1 to A-4 show that the STMI adap-
tive tests reached near peak validities with relatively few items. For
both item types and entry conditions, the STMI tests began to approxi-
mate their final validities at about 8 to 10 ftems. By contrast, the
BAYES tests generally required about 20 to 22 items before validities
approached their final values. Under fixed-entry conditions, the STMI
AR and WK validities at 8 to 10 items were near those of the 20- and
30-item ASVAB/N tests. Under varlable-entry conditions, STMI validities
at 8 to 1N items were still somewhat below the ASVAB/N validities.

Effect of maximum likelihood boundary values. The sequential va-
lidity data shown in Figure 15 for STMI were computed with the original
bounds for maximum likelihood ability estimates. Subsequent to those
analyses, virtually all remaining validity analyses were conducted using
a set of revised bounds for maximum likelihood estimates. Table 15

- 74 -




Score Information Functions for Three Scores on ASVAB-7 Subtests
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Figure 15

Criterion-Related Validity Correlations of Fixed-Entry Adaptive Tests
as a Function of Number of Items Administered,
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shows the effect on terminal validity (i.e., after 20 AR items and 30 WK
items) of using the original bounds, in~bounds cases only, and the re-
vised bounds described previously. As these data show, for STMI the use
of in-bounds estimates resulted in one increase and five decreases in
criterion-related validity, whereas the use of revised bounds resulted
in no change in four instances and slight increases in validity in two
instances. For ASVAB/M, in-bounds-only estimates resulted in four in-
creases in validity, but in decreases for AR items. On the other hand,
the revised bounds for ASVAB/M resulted in increases in validity in all
cases. Consequently, all of the following analyses (with one exception)
were conducted with the revised bounds.

Table 15 i
Criterion-Related Validity Correlations of Maximum

Likelihood Ability Estimates for Original-Bounds, ,
In-Bounds, and Revised-Bounds Scoring !
Test and Original In-Bounds Revised
Group Bounds? Only Bounds?
STMI AR
AR-WK .501 466 «501
WK-AR 406 346 411
STMI WK
AR-WK <346 .302 +346
WK-AR .276 «294 +276
STMI Compousite
AR-WK 534 «502 +534
WK-AR .459 <426 +461
ASVAB/M AR
AR-WK 425 402 443
WK-AR .396 .357 407
ASVAB/M WK
. AR-WK .370 <373 -389
WK-AR .250 .337 <279
ASVAB/Y Composite
AR-WK «490 497 +516
WK-AR 421 <438 442
2N = 221 in AR-WK group and N = 231 in WK-AR group.
N = 201 in AR-WK group and N = 208 in WK-AR group.

Linear-model analysis. Table 16 shows the criterion-related valid-

rately for the AR and WK items. The grand mean of the validity correla-

tions across all of the 20 conditions was .392, with a standard devia-

tion of .072. Table 17 summarizes the marginal means collapsed across

¢ the order conditions separately for the AR and WK items, and the com-

- bined marginal mean for each testing strategy across order conditions
and {tem types.

:
F ity correlations for each TSSM under each order of administration, sepa-
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Table 16
Criterion—-Related
Validity Correlations
for Single Tests

TSSM
and Item Cell
Order Type Code r
BAYES
1 AR 1 467
2 AR 2 457
1 WK 3 .294
2 WK 4 347
STMI*
1 AR ) .501
2 AR 6 411
1 WK 7 276
2 WK 8 .346
ASVAB/B
1 AR 9 .456
2 AR 10 443
1 WK 11 «292
2 WK 12 .399
ASVAB/M* -
1 AR 13 443
2 AR 14 407
1 WK 15 .279
2 WK 16 .389
ASVAB/N
1 AR 17 491
2 AR 18 448
1 WK 19 294
2 WK 20 409
Mean .392
S.D. .072

*Revised boundaries were
used for maximum likelihood
estimates.

For the AR items, the data show highest mean validity for ASVAB/N
(+469; see Table 17) with BAYES resulting in a mean validity of .462.
Lowest mean validity was for ASVAB/M (.425), with ASVAB/B intermediate
between the lowest and the highest ASVAB mean validities (.449). STMI
for the AR items had a mean validity of .456. For the AR items there
appeared to be a slight order effect with higher validities for all
TSSMs occurring in the Order 1 condition (Table 16).

For WK items Table 17 shows the highest mean validity again for
ASVAB/N (.352). ASVAB/B obtained second highest mean validity (.345),
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Table 17
Marginal TSSM Means for
Single-Test Validities

Mgz&inal Mean

TSSM AR WK Combined
BAYES 462,320 .391
STMI* 456 .311 .383
ASVAB/B 449 .345 .397
ASVAB/M* 425 0334 .380
ASVAB/N 469  .352 410

*Revised boundaries were used for
maximum likelihood estimates.

followed by ASVAB/M (.334). Both the adaptive tests obtained lowest
mean validities for the WK items, with BAYES resulting in a mean validi-
ty correlation of .320, and STMI the lowest with r = ,311. For the WK
items, the apparent order effect was reversed, with highest validities
for all TSSMs in the Order 2 condition (Table 16). The largest differ-
ence occurred for the ASVAB/N condition (cell codes 19 and 20) where the
Order 1 condition obtained a validity of .294, while the validity in the
Order 2 condition was .409.

Table 18
Three-Way Linear—Model Analysis for Single-Test Validities
Proportion
Ef fect df1 df F P of Variance
Main Effects
TSSM (A) 4 222 3.02% .019 .023
Item Type (B) 1 225 6.67* .010 .688
Order (C) 1 225 .25 .619 ,033
2-Way Interactions
AXB 4 222 .83 «505 .021
AXC 4 222 1.61 174 .019
BXC 1 225 1.19 277 .200
3-Way Interaction 4 222 3.02* .019 016

*Statistically significant at p <.05.

Table 18 shows the results of the three-way linear-model analysis
for single-test validities. As the data show, there was a significant
main effect for TSSM, a significant main effect for Item Type, and a
significant three-way interaction among the independent variables. Fig-
ure 16 plots the validity corre.ations shown in Table 16, to illustrate
the nature of the three-way interaction. Table 19 shows the results of
significance tests for the three-way interaction contrasts, each with a
single degree of freedom. The only significant contrast was the one
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Figure 16
Three-Way Interaction of TSSM, Item Type, and Order
(Cell Codes Are in Parentheses) {

' .52 .52

.50 .50

.48 .48

.46 7 .46

A

.42

.40

.38

.36

Validity (X)

.34 1

. 24 .
.22i =+ .22 ;
.20 Lo ?
Before Break After Break .
Tabhle 19
Three-Way Interaction Contrasts for Single-Test Validities
Cells Contrasted F P ;
{C 1+4 ) - ( 2+3 )] - [(17+20) - (18+19)] 1.39 .239 !
[ 548 ) - ( 6+7 )] - [(17+20) - (18+19)] .00 .968 !
[C 9+12) - (10+11)] - [(17+20) - (18+19)] 1.80 .182 !
[(13+16) - (14+15)] - [(17+20) - (18+19)] .13 715
[( 144 ) = ( 243 )]} ~ [(13+16) — (14+15)] 1.05 .308
(¢ 5#48 ) = ( 6+7 )] - [(13+16) - (14+15)] .05 .823
(( 9+12) = (10+11)] - [(13+16) - (1l4+15)] 1.36 «245 '
[C 144 ) = ( 243 )] ~ [( 9+12) - (10+11)] .50  .478
{C 548 ) = ( 647 )] - [( 9+12) - (10+11)] .30 «585
[ 1+4 ) = ( 243 )] - [( 58 ) - ( 6+7 )] 8.56*% .004 ;
Note. 1 and 225 degrees of freedom for all contrasts. 5
*Statistically significant at p < .005. g
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involving cell codes 1+4 and 2+3 versus 5+8 and 6+7. As shown in Figure
16, this contrast involved the BAYES tests and the STMI tests. For
these two adaptive tests, there was a differential Item Type by Order
two-way interaction effect. For STMI, the difference between validities
obtained in the AR-WK condition and those obtained in the WK-AR condi-
tion was .08. For BAYES, this same difference was approximately .03.
Thus, STMI was more sensitive to the Item Type by Order two-way interac-
tion. None of the three-way interaction contrasts involving the conven-
tional tests were statistically significant.

As shown in Table 18, the marginal Item Type by Order two-way in-
teraction was not significant in spite of the fact that this effect ac-
counted for 20 percent of the variance in single-test validities. This
is because the contrast involved in testing this effect is a between-
groups contrast. As mentioned earlier, this results in a test that is
less sensitive than the other tests in the linear-model analysis. Nev-
ertheless, the presence of this two-way interaction is clearly seen in
Figure 16 where the slopes of all lines connecting AR tests are negative
and the slopes of all lines connecting WK tests are positive. As shown
in Table 16 and Figure 16, the significant main effect for Item Type was
due to the tendency for AR tests to have higher validities than WK
tests, regardless of TSSM or order condition.

Table 20
Pairwise Contrasts Among
Marginal TSSM Means
for Single-Test Validities

Contrast F P
BAYES vs. ASVAB/N .90 .343
STMI vs. ASVAB/N 1.55 .215
ASVAB/B vs. ASVAB/N 3,22 074
ASVAB/M vs. ASVAB/N 9.55% .002
BAYES vs. ASVAB/M .37 +545
STMI vs. ASVAB/M .07 .798
ASVAB/B vs. ASVAB/M 10.20%* .002
BAYES vs. ASVAB/B .09 .770
STMI vs. ASVAB/B .38 .536
BAYES vs. STMI «64 424

Note. 1 and 225 degrees of freedom for
all contrasts.
*Statistically significant at p < .005.

Table 20 shows the results of testing pairwise contrasts among the
marginal TSSM means. There were two significant contrasts, both involv-
ing only ASVAB tests. The mean ASVAB/N validity of .410 (see Table 17)
was significantly higher than the mean ASVAB/M validity of .380.

ASVAB/B also had a significantly higher mean validity correlation (.397)
than ASVAB/M. None of the differences in validities between the adap-
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tive and conventional tests were statistically significant.

ComEosites

Intercorrelations between AR and WK scores. Table 21 shows the
intercorrelations among the 10 test scores generated for members of Sub-
group 4. In addition to being computed in a different subgroup than the
correlations in Table 14, these data are based on the revised boundaries
for maximum likelihood ability estimates. The AR and WK cross-correla-
tions in Table 21 suggest a tendency for WK and AR scores to correlate
lower for the two adaptive tests than they did for the ASVAB tests. In
particular, the cross—correlations between AR and WK scores for BAYES
and STMI were .172 and .158, respectively, in the WK~AR group and .288
and .285 in the ~R-WK group. By contrast, ASVAB/N AR and WK scores cor-
related .313 in the first group and .333 in the second group.

Table 21
Pearson Product-Moment Correlations Among Test Scores
in the WK-AR and AR-WK Graduate Groups, for AR and WK Items

Item Type AR WK
and TSSM 1 2 3 4 5 1 2 3 4 5
AR
1. BAYES .930 .750 .717 .744 .172 .191 .192 .187 .180
2. STMI* .953 714 .687 .712 .140 .158 .150 .143 .134
3. ASVAB/B .78 .783 .973 .968 .298 .301 .311 .298 .318 b
4. ASVAB/M* ,768 .772 .978 .928 260 .261 .268 .255 .272 )
5. ASVAB/N 771 .768 .974 .948 .287 .287 .295 .278 .313 )
WK
1. BAYES .288 .301 .300 .275 .277 .973 .826 .821 .801
2. STMI* «270 .285 .285 .260 .263 .993 .819 .817 .799
3. ASVAB/B 302 .315 .338 .311 .329 .833 .834 .990 .966
4, ASVAB/M* .300 .315 .338 .309 .328 .834 .835 .991 .948

5. ASVAB/N .313 .326 .343 .322 .333 .832 .830 .975 .961

Note. Correlations in WK~AR Group (N = 231) appear above the
main diagonal. Correlations in AR-WK Group (N = 221)
appear below the main diagonal.

*Revised boundaries were used for maximum likelihood estimates.

Figure 17 shows the results of significance tests of the differ-
ences among the cross-correlations obtained after pooling the AR-WK and
WK-AR groups in Subgroup 4. As Figure 17 shows, there were no signifi-
cant differences in the cross-correlations for STMI, BAYES, and ASVAB/M.
ASVAB/M, with r = .283 was significantly different (p < .05) than
ASVAB/N and ASVAB/B (r = .324 and .326). Finally, there were signifi-
cant differences between the cross-correlations obtained for both STMI
and BAYES and the cross-correlations obtained for ASVAB/N and ASVAB/B. M
In all cases, the cross—correlations were significantly lower (p < .05)
for the adaptive tests than they were for the ASVAB tests.
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Figure 17

Cross—-Correlations Between Test Scores
from AR and WK Tests (N=452)

STMI : r = ,222
b o

BAYES : r = .233

NS
—sig.
ASVAB/M : r = ,283
Sig.

ASVAB/N : r = .324
T I

ASVAB/B : r = .326

Linear-model analyses. Table 22 shows criterion-related validity
correlations for both the fixed-weight and optimally-weighted compos-
ites, separately for each TSSM and content-order group. For both fixed-
and optimally-weighted composites, there appeared to be a difference in
validity correlations between the AR-WK group and the WK-AR group. 1In
each case, the first group obtained higher validity correlations than
di 1 the second group. For the fixed-weight composites, the highest sin-
gle correlation was .545 for ASVAB/N, while the highest average correla-
tion with content~order groups combined was .506 for BAYES. For the
optimally-weighted composites the highest single validity correlation
was .555 for ASVAB/N, and the highest average correlation across con-
tent-order groups combined was .515 for ASVAB/N, with BAYES obtaining a
mean correlation of .511. Lowest average validity correlations were
.479 for ASVAB/M with fixed weights, and .481 for ASVAB/M with optimal
weights. Average validities for STMI and ASVAB/B were all near .50.

It is interesting to note that while there was a mean validity dif-
ference of .023 in favor of ASVAB/N over BAYES and STMI for single~test
validities (Table 17), there was a mean validity difference of .005 in
favor of BAYES and STMI using fixed-weight composites and a mean validi-
ty difference of only .008 in favor of ASVAB/N for the optimally-
weighted composites. Thus, mean adaptive-test validities were essen-
tially equal to those of ASVAB/N when composite scores were computed
from the single-test scores. This was a result of the lower cross-
correlations between AR and WK scores for the two adaptive tests (aver-
age cross—correlation = .226 in Table 21) in comparison to ASVAB/N (av-
erage cross—correlation = ,323 in Table 21).

Table 23 shows the results of the two-way linear-model analyses for

both fixed-weight and optimally-weighted composites. For the fixed-
weight composites there was a significant two-way interaction, but no
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Table 22
Criterion-Related Validity Correlations for
Fixed-Weight and Optimally-Weighted Composites 3

TSSM and Cell Fixed Optimal
Content Order Code Weights Weights
Bayes
AR-WK 1 .513 .517
WK-AR 2 «500 «506
Mean .506 511
STMI*
AR-WK 3 .534 .543
WK—-AR 4 461 <463 :
Mean 498 .503 :
ASVAB/B |
AR-WK 5 .525 «525
WK~-AR 6 464 472
Mean 494 .498 ]
ASVAB/M*
AR-WK 7 .516 517
WK-AR 8 442 <445
Mean 479 481
ASVAB/N
AR-WK 9 «545 «555
WK-AR 10 451 476
Mean 498 .515

*Revised boundaries were used for maximum like-
lihood estimates.

Table 23
Two-Way Linear-Model Analyses for Fixed-Weight-Composite
and Optimally-Weighted-Composite Validities

Type of Weights Proportion
and Effect df1 df2 F p  of Varilance

Fixed Weights
Main Effects

TSSM 4 222 1.21 .307 .060
Content Order 1 225 .90 -345 .790
2~Way Interaction 4 222 3.05* .018 .150
Optimal Weights
Main Effects
TSSM 4 219 1.35 <254 .125
Content Order 1 222 .35 «556 «731
2-Way Interaction 4 219 1.81 .128 144

*Statistically significant at p < .05.
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significant main effects. For the optimally-weighted composites there
were no significant differences among the validities.

Table 24 shows the results of a posteriori significance tests for
the significant two-way interaction between TSSM and Content Order for
fixed-weight composites. As the data show, the contrast between cell
codes 1 and 2 versus 3 and 4 approached statistical significance. This
suggests that the significant two-way interaction resulted from the lack
of a Content Order effect for BAYES in contrast to the substantial Con-
tent Order effect for STMI (see Table 22). None of the contrasts in-
volving the adaptive versus the conventional tests were statistically
significant. The absence of a significant two—way interaction for opti-
mally-weighted composites presumably reflects the fact that estimating
regression weights instead of using fixed weights tends to increase the
sampling variance of the contrasts tested.

Table 24
Two-Way Interaction Contrasts for
Fixed-Weight-Composite Validities

Cells Contrasted F P
(1-2) - (9-10) 2.76 .098
(3-4) - (9-10) 17 680
(5-6) - (9-10) 2.71 .101
(7-8) - (9-10) .68 411
(1-2) - (7-8) 1.50 223
(3-4) - (7-8) .00 .978 Y
(5-6) - (7-8) 73 .393
(1-2) - (5-6) 1.03 .311
(3-4) - (5-6) .07 .786
(1-2) - (3-4) 7.74% .006

Note. 1 and 225 degrees of free-

dom for all contrasts. i ]
*Approaches statistical significance
at p < .005.

Comparison with pre—enlistment ASVAB composites. Table 25 shows
criterion-related validity correlations computed in the two content-
order groups and the combined content-order group in Subgroup 5. Origi-
nal boundaries were used for the maximum likelihood ability estimates.
The table also shows validity correlations for five pre-enlistment ASVAB
composites in this subgroup. The most informative comparisons in the
table are between the pre-enlistment General-Technical composite (WK+AR)
and the five experimental WK+AR composites.,

Since the pre-enlistment ASVAB tests were composed of items pre-
sented in a standard booklet format, comparison of the average experi-
mental-composite validity in the combined group (.491 over all TSSMs)
with the pre-enlistment General-Technical-composite validity of .493 in
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Table 25
Criterion-Related Validity of Pre~Enlistment
ASVAB Composite Scores and Experimental
Fixed-Welight-Composite Scores

Group
WK-AR AR-WK Combined
Composite (N=206) (N=200) (N=406)
Pre~Enlistment ASVAB
Mechanical 381 368 .377
Administative 227 <332 .281
General—-Technical 478 «510 .93
Electronics 414 429 421
AFQT .507 495 .500
Experimental
BAYES 499 494 497
STMI* 451 524 .487
ASVAB/B 478 «532 .504
ASVAB/M* 433 494 462
ASVAB/N <463 <551 .506

*Original boundaries were used for maximum
likelihood estimates.

this same group suggests that computer administration of aptitude test
items does not degrade the validity of scores derived from these items.
The only experimental composite that differed substantially from the
pre—enlistment General-Technical composite in the combined group was
ASVAB/M with a validity of .462. This difference was presumably an ef-
fect due to scoring method since the other two experimental-ASVAB-~
composite validities actually exceeded the pre-enlistment General-
Technical composite's validity in the combined group.

The difference of .032 between the validity of the pre-enlistment
General~Technical composite in the AR-WK group and the validity of this
composite in the WK-AR group suggests that the AR-WK group may have been
a "more predictable” sample even when AR and WK items were given to
these two groups in the same order (WK before AR in the pre-enlistment
ASVAB). This suggests that a portion of the non-significant two-way-
interaction effect that was seen in Figure 16, and also the group dif-
ferences mentioned in the discussion of Table 22, might be attributable
to simple randomization error.

DISCUSSION AND CONCLUSIONS

This study provided the first direct comparison between the STMI
and Bayesian adaptive testing strategles using the same examinees and
the same item pools for both tests. Results indicated that the two
testing strategies tended to select the same items for most individuals.
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On the average, about 85Z of the items selected for an individual by one
adaptive strategy were also selected by the other strategy.

Two factors contributed to this finding. First, both the item in-
formation function, which is used by STMI in selecting items, and the
expectation of the Bayesian posterior variance, which is minimized by
BAYES during item selection, are strongly influenced by an item's dis-
crimination parameter (a). Thus, items having high a values will tend
to be selected by both strategies. Second, the BAYES strctegy used rel-
atively diffuse prior distributions with standard deviations of 2.15 and
2.35 (in the fixed-entry condition), or 1.76 and 1.96 (in the variable-
entry condition) for AR and WK, respectively. This allowed relatively
large fluctuations in the Bayesian ability estimates during testing and
this, in turn, resulted in the selection of items that would not have
been used by the BAYES strategy if the prior standard deviation had been
set to 1.0, as it frequently is.

The data on computer response time showed that the Bayesian adap—
tive test took considerably more computer time than did the STMI or
ASVAB tests, which were very similar in cowmputer response time. The
observed difference between the STMI and BAYES adaptive tests reflects
the fact that STMI did not require a search of the €full item pool in
order to select each test item. Many of the computar response times
observed for the Bayesian adaptive tests were longer than desirable in
an operational testing environment. However, these computer response
times were largely dependent on the characteristics of the computer sys-
tem utilized and the design of the operating system software. Subse-
quent experience with the design of similar adaptive testing systems,
using more sophisticated computer hardware and improved operating system
software, has shown that the long computer response times observed in
this study for the Bayesian strategy can be reduced to acceptable re-
sponse times of two seconds or less. Hence, these data should not be
viewed as detrimental to the application of the Bayesian strategy in
operational testing environments.

The results of this study were consistent with earlier studies in
showing longer examinee response times for adaptive versus conventional
tests (Johnson, Weiss, and Prestwood, 1981; Martin et al., in press;
Waters, 1977). 1In this study, as in the earlier studies, the differ-
ences in examinee response times were largely a function of the differ-
ing {tem difficulties of the adaptive and conventional tests. Since the
adaptive tests tallored item difficulty to each individual's ability
level, most examinees received more difficult items in the adaptive
testing condition than in the conventional testing condition. The ASVAB
subtests contained many items that were too easy for the examinee sam-
ple. Consequently, the time required by an examinee to answer the ASVAB
items was usually less than it was for the items in the adaptive tests.
The data did suggest that for a given amount of testing time, even if
fewer items are administered in an adaptive test, levels of measurement
precision that significantly exceed the precision available from stan-
dard ASVAB tests are readily attainable.
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The results of the comparison between the fixed—-entry and variable-
entry testing conditions were equivocal. For three of the four adaptive
tests the possibility of a slight advantage in favor of variable entry
was indicated. However, the observed differences were not large and for
the STMI AR test there was a substantial difference in favor of the
fixed-entry condition. The STMI AR correlations between interim and
final ability estimates under variable entry were found to be lower at
each point in the test than similar correlations computed for the other
STMI and BAYES tests regardless of item type (AR or WK) and entry type.
The reason for this finding was not immediately apparent.

Score Information

The results of this study agreed with previous research in demon-
strating higher levels of information/precision for the adaptive tests
in comparison to the conventional tests. The information analysis
showed that the ASVAB subtests would have to be increased in length sub-
stantially to equal the precision of the adaptive tests.

The information functions shown in Figure 14 indicate that the sub-
stantial differences seen in Figure 13 between ASVAB and the adaptive
tests are not a result of the fact that ASVAB/N, rather than ASVAK/B or
ASVAB/M, was used for the comparison. 1In fact, the real reason for the
large differences observed in Figure 13 is to be found in Tables 2 and
3. 1In Table 3 it is seen that both ASVAB subtests contained a number of
items that were really too easy to provide much information near ©§ = 0.
Yoreover, the median level of item discrimination in the ASVAB subtests
was rather low (about .70) and the median ¢ parameter was near .25. On
the other hand, Table 2 shows that both adaptive—-test item pools con-
tained a large number of items with difficulties that provided adequate
information near 8 = 0 and that the median a and ¢ parameters in these
pools were about .90 and .18, respectively.

Since adaptive tests systematically select items with higher than
average levels of discrimination and lower than average ¢ parameters, it
may be assumed that the adaptive testing strategies improved on the al-
ready obvious superiority of their item pools. A rough comparison can
be made by assuming that each adaptive test selected items falling in
the upper 30% of each item pool's a distribution and the lower 302 of
each pool's ¢ distribution. Given this assumption, the data in Table 2
suggest that the median a among items actually administered in the adap-
tive tests may have been about 1.25 (roughly the 80th percentile of the
two a distributions).

Since {tem information, which has an indirect effect on score in-
formation, is an increasing function of a? (Lord, 1980, p. 73) the rea-
son for the substantial differences observed in Figure 13 becomes ob-
vious. Squaring the median ASVAB a (.70) and the roughly approximated
median adaptive-test 3 (1.25) gives .49 and 1.56, respectively. The
ratio of the latter tc the former (3.19) approximates the proportional
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increase in length required in order for the two ASVAB subtests to ob-
tain information levels comparable to the adaptive tests at 8 = .3 (for
AR) and 6 = .6 (for WK).

The ASVAB items were found to be poorly suited for the task of pre-
cise measurement near the mean of the Air Force enlistee population.
While conventional tests could be constructed that would provide higher
levels of information than the ASVAB subtests by selecting highly dis-
criminating items from the adaptive-test item pools, and such tests
might even provide somewhat more information than the adaptive tests
over short, selected © intervals, they could not provide the same high
level of information over a wide range of ability.

Validity

Validity analyses at the single-test level showed a small non-—
significant advantage in favor of the conventional tests over the adap-
tive tests. Howevers, when both equally-weighted and optimally-weighted
composite scores were computed, the adaptive testing strategies provided
virtually identical average ievels of criterion-related validity. This
finding was attributed to the tendency for the adaptive strategies to
generate lower cross-correlations between individual AR and WK scores.

It is possible that by selecting more highly discriminating items,
adaptive tests tend to generate ability estimates that are more nearly
"factor pure.” If this conjecture is correct, it would account for the
lower adaptive-test cross—correlations observed in this study.

Pairwise contrasts among marginal TSSM mean validities for single
tests indicated that maximum likelihood scoring of the ASVAB subtests
resulted in significantly lower levels of validity than either number-
correct scoring or Bayesian scoring of these tests. None of the con-
trasts between the adaptive tests and the varlous scorings of ASVAB were
statistically significant.

A significant {interaction involving STMI and BAYES was observed in
both the linear-model analysis for single tests and the linear-model
analysis for equally-weighted composites. In both cases, STMI was sig-
nificantly more sensitive to the tendency for AR validities to be lower
when the AR items were administered in the second half of the testing
session. It seems likely that there 18 a connection between these sig-
nificant interactions and the finding that interim and final ability
estimates correlated less highly for the STMI AR test under the
variable-entry condition (which was implemented in the second half of
each testing session) than for any other combination of adaptive testing
strategy, item type, and entry type. Further research is needed to
identify the source of these apparently related effects.

The data on adaptive-test validity as a function of test length

showed that the STMI adaptive tests approached their terminal validities
after only 8 to 10 items. Moreover, under the fixed-entry condition,
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STMI validities at 8 to 10 items approximated the validities of the much
longer ASVAB subtests. The Bayesian adaptive tests were observed to
approach thelr terminal validities somewhat more slowly than did STMI.

Relationship with Previous Research

Four previous studies of the validity of computer-administered
adaptive tests were briefly discussed above in the introduction. Table
26 summarizes some of the results obtained in three of these studies and
in one other study (Johnson & Weiss, 1980) that examined only the alter-
nate-forms reliabilities of conventional and adaptive tests.

Table 26
Alternate~Forms Reliability and Concurrent-Validity
Correlations at a Test Length of 30 Items
from Four Studies of Adaptive Testing

Alternate-
Forums Concurrent
Reliability Validity

Conven- Bayesian Conven— Bayesian
tional Adaptive tional Adaptive

Study Test Test Test Test
Kingsbury & Weiss (1980) .88 .92 84 .80
Johnson & Weiss (1980) .90 .81 *k %k
McBride (1980) .38% .90% .87 .85
Martin et al. (in press) .89 .90 .81 .84

*Revised values provided by McBride, personal communication.
**Validity coefficlents were not computed in this study.

All four of the studies listed in Table 26 utilized a 30-item
Bayesian adaptive word-knowledge test as one of the testing strategies
studied. Each study compared the Bayesian adaptive test to a 30-item
conventional word-knowledge test. (Johnson and Weiss also studied a
30-item maximum—-information strategy somewhat like the STMI method, but
results for this test will not be presented here since none of the other
studies used this strategy.) Both Kingsbury and Weiss (1980) and
Johnsnn and Weiss (1980) tested college students and used a conventional
predictor test with a peaked distribution of item difficulties. McBride 1
{1980) and Martin et al. (in press) tested Marine recruits and used a
conventional predictor test with a broad range of item dif{ficulties. 1In
spite of these differences between the studies, there is a remarkable
degree of consistency among the four conventional-test alternate-forms
reliability coefficients shown in Table 26. The values range from .88
to .90, with a mean of .89. The adaptive-test alternate~forms reliabil-
ities obtained in three of the studies are also quite similar, ranging
from .90 to .92 with a mean of .91. However, the value obtained by
Johnson and Weiss (.81) deviates substantially from the others. 9
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A likely explanation for the anomalous result obtained by Johnson
aud Weiss is found in their description of the method used to assemble
their adaptive-test item pool. They state that "Items with discrimina-
tion parameters of a = 3.00 were routinely rejected because this value
was identified as a statistical artifact of the parameterization program
and not as a true reflection of the item's discrimination value” (p.
19). While the limiting value imposed on item discrimination parameters
during calibration of the item bank that Johnson and Weiss had available
for item—-pool construction was admittedly arbitrary, items that attained
this limiting value should have been included in Johnson and Weiss'
adaptive-test item pool. As a group, these items would have been among
the best items available in the item pool. Eliminating them from con-
sideration served to reduce the adaptive test's discriminating power
and, presumably, its reliability.

Support for this possible explanation of Johnson and Weiss' results
is found in the adaptive-test reliability coefficient obtained by Kings-
bury and Weiss (.92 in Table 26). The adaptive-test 1tem pool assembled
by Kingsbury and Weilss consisted of items drawn from the same large item
bank that was available to Johnson and Weiss. However, Kingsbury and
Weiss did not exclude items with estimated a values of 3.00. In fact,
examination of Kingsbury and Weiss' Appendix Table C reveals that 26% of
the items in their adaptive-test item pool had estimated a values at the
limiting boundary value of 3.00. The median estimated a value among the
items selected by Kingsbury and Weiss for their adaptive-test item pool
was 1.20. This may be contrasted with the mean estimated a value of .76
in the Johnson and Weiss adaptive-test item pool (Waters, 1980, p. 52).
Since the Bayesian adaptive test lmplemented by Johnson and Weiss was
handicapped by the limitations of its item pool, the adaptive-test al-
ternate-forms reliability obtained by Johnson and Weiss should not be
considered comparable to the other three values appearing in column two
of Table 26.

Thus, on the basis of the available empirical evidence, it seems
reasonable to conclude that a 30-item Bayesian adaptive word-knowledge
test will tend to be somewhat more reliable (by about .02) than a typi-
cal 30-item conventional test. This conclusion is consistent with the
earlier discussion of the tendency for adaptive tests to have rather
high score information functions over a fairly wide range of ability.

Columns three and four of Table 26 present average “concurrent-
validity” coefficients for the 30-item conventional and Bayesian-
adaptive tests in three of these studies. Each of the entries in col-
umns three and four of Table 26 is the average of two concurrent-vali-
dity coefficients. In the Kingsbury and Weiss study, the "criterion”
was a 120-item Bayesian-scored conventional word-knowledge test. In the
McBride and Martin et al. studies the criterion was a 50-item number-
correct-scored conventional test.

The Kingsbury and Weiss study 1s unique in that it used a large
sample (N = 472) and a repeated measures design. This experimental de-
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sign served to eliminate the effect of between-groups sampling error
from comparisons between the adaptive and conventional tests. The
McBride and Martin et al. studies, on the other hand, used two different
experimental groups, one for each test type. While the experimental
groups were smaller in the McBride and Martin et al. studies than in the
Kingsbury and Welss study, McBride and Martin et al. used test items
that had been calibrated with larger sample sizes and a better item cal-
ibration procedure. Moreover, the Martin et al. study was a replication
of the McBride study. Martin et al. used the same conventional "pre-
dictor” test, the same Bayesian adaptive-test item pool, and the same
50-item conventional criterion test.

Since Martin et al. drew their experimental examinees from the sar
Marine recruit population that McBride sampled, it appears that any dif
ference between the McBride and Martin et al. results are attributable
to sampling error. While the similarity of the alternate-forms reli-
abilities and the adaptive-test validities obtained in the McBride and
Martin et al. studies 1is encouraging, the observed difference (.87 vei-
sus .8l) between the average conventional-test validities in these stua
ies is rather large. 1In any event, simple averaging of the six conven-
tional-test concurrent-validity coefficients represented in column three
of Table 26 gives a value of .84 while averaging the six adaptive-test
validity coefficients represented in column four gives a value of .83.
This small average difference in favor of the six conventional tests is
consistent with the results obtained for single-test validities in the
present sgtudy.

The fourth study of adaptive-test validity (Thompson and Weiss,
1980) was unique in that it used nine different "real-world” criteria--
high—-school and college grade-point averages and ACT scores—-instead of
another word-knowledge test as the criterion. In the Thompson and Weiss
study, two relatively small experimental groups (Groups 1 and 2) were
tested. In Group 1, a variable-length "stradaptive” word-knowledge test
was compared to a 40-item couventional word-knowledge test. Since there
were two predictor tests and the gtradaptive test was parameterized two
ways and scored four ways, and since nine criterion scores were avail-
able, a total of 180 pairwise contrasts between individual validity co-
efficients were conducted in Group 1. The N for each comparison ranged
from 55 to 101 since all nine criterion scores were not available for
every examinee. A total of 21 statistically significant contrasts be-
tween validity coefficients were obtained. Four of these significant
contrasts favored the adaptive test over the conventional test when
overall college grade~point average was the criterion. One of the sig-
anificant contrasts favored the conventional test over the adaptive test
when college mathematics grade-point average was the criterion. The
other 16 significant contrasts involved comparisons between various
scorings and parameterizations of the adaptive test.

In Group 2 of the Thompson and Weiss study, a variable-length

Bayesian word-knowledge test was compared to the same 40-item conven-
tlonal word-knowledge test that was used in Group 1. In Group 2, the
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same nine criterion variables were used, but only one method of parame-
terizing and scoring the adaptive test was considered. Among the nine
coatrasts between adaptive- and conventional-test validities that were
tested (with N varying from 71 to 131) only one was statistically sig-
nificant. This contrast was in favor of the adaptive test when predict-
ing high-school grade-point average.

Two considerations make interpretation of the results of the Thomp-
son and Weiss study problematic. First, the significance testing proce-
: dure that was adopted in this study provided no control over the experi-
J mentwise error rate in either group of examinees. Since all contrasts
7 within a group used overlapping sets of examinees, and since many of the
contrasts differed only with regard to the adaptive-test scoring method
or the item parameterization method involved, it may be concluded that
most of the contrasts would be highly correlated over samples. Whenever

..contrasts are highly correlated and at least one Type I error is present
in a sample, substantially more than 1000 percent of the set of con-
trasts tested will be statistically significant at the & level, even if
the null hypothesis is true for all of the contrasts.

In particular, the four significant contrasts in favor of the

stradaptive testing strategy that were observed in Thompson and Weiss'
Group 1 could be expected to either be all significant or all non-signi-
ficant in any given replication of this study, since the adaptive-test
predictor scores that were involved in these contrasts are known to cor-
relate in the high nineties. (It should be emphasized that these com- .
ments do not serve to demonstrate that the four significant coantrasts in
favor of the stradaptive test were Type I errors. They do indicate that

i these four contrasts should be viewed as essentially one significant

t result, not four different significant results.) -

The second problem associated with the Thompson and Weiss study is
that a careful examination of the item parameters in the 40-item conven-
tional test (their Appendix Table C) and the adaptive tests' item pools
(their Appendix Tables A and B) reveals that the adaptive tests' pools
contained a substantial number of items of distinctly higher quality
than were present in the conventional test. In particular, if the 15
most discriminating items in Stratum 5 of the stradaptive-test item pool
were combined with the 14 most discriminating items in Stratum 4, the
result would be a 29-item conveantional test that provides about 50% more
test information near 6 = 0 than Thompson and Weiss' 40-item convention-
al test. Twenty-nine items closely approximates the mean stradaptive-
test length that was observed in this study.

Similarly, a peaked 35-item conventional test with a mean discrim-
ination parameter of approximately .80 (a value near the mean of the
Bayesian-test item-pool discriminations) would provide about 90% more
information near 6 = 0 than the 40-item conventional test (which had a
mean discrimination value of approximately .54). Thirty-five items was
the median Bayesian—adaptive—test length observed in this study.
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Taken together, the results summarized in Table 26, the results of
the Thompson and Weiss study, and the results of the current research
seem consistent with the conclusion that there is as yet no clear-cut
evidence that at a test length of 30 items either conventional or adap-
tive word-knowledge tests have consistently higher concurrent or crite-
rion-related validities in the populations studied. Possibly the most
important observation to make is that the adaptive tests did not have
significantly lower validities than the conventional tests in these pop-
ulations. This is not a trivial conclusion in light of the fact that
adaptive tests administer different items to different examinees.

! It is still possible that increases in predictive validity due to

j the use of adaptive testing strategies will be observed when these
strategies are used in a full-range sample from the military applicant
(AFEES) population. Research studies conducted to date, including the
present one, have sampled examinees from populations with a narrower
range of ability than is found in the AFEES population. Since the psy-
chometric advantages of adaptive testing increase as the range of abili-
ty in the examinee population is increased, and since research in rela-
tively narrow-range populations has demonstrated that adaptive testing
does not degrade validity, the next logical step would be to compare the
criterion-related validity of conventional and adaptive tests in a sam-
ple from the ATFEES population.

Conclusions

Although this study did not demonstrate any statistically signifi-
cant increases in criterion-related validity due to adaptive tests, it
did support the feasibility of adaptive testing in military testing en-
vironments, since validities obtained using adaptive tests were not sig-
nificantly different from those obtained from ASVAB subtests. In addi-
tion, the data showed that adaptive tests could provide levels of mea-
surement precision obtainable only with much longer ASVAB tests, and
that adaptive tests one-third to one-half the length of conventional
ASVAB tests could approximate the criterion-related validities of these
conventional tests. When combined with other advantages of computerized -
adaptive testing, including immediate availability of test results for
selection and classification decisions, potential beneficial psychologi-
cal effects (e. g., Betz & Weiss, 1976a, 1976b; Johnson et al., 1981), J
and the alleviation of test compromise problems, this study supports the !
potential utility of computerized adaptive ability testing in a military i
testing environment.
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Condition as a Function of

APPENDIX:

Supplementary Tables

Table A-1

Means and Standard Deviations of Ability Estimates
and Criterion-Related Validity Correlations (r) of
BAYES and STMI Adaptive AR Tests in the Fixed-Entry
Number of Items Administered,

for AR-WK Group (N=221)
Test BAYES STMI*

Length Mean Sb r Mean SD r
0 -1.300 .000 .000 -1.300 .000 .000
1 -.751 1.048 .250 -.691 .781 .250
2 -.572 1.547 <347 -.435 1.037 .307
3 -.501 1.445 .371 -.307 1.300 <344
4 -.534 1.343 400 -.256 1.302 2372
5 -.585 1.240 <431 -.258 1.264 .408
6 -.556 1.196 422 -.239 1.208 440
7 -.555 1.167 457 -.222 1.144 <461
8 -.522 1.153 474 -.227 1.127 479
9 -.477 1.154 446 -.239 1.115 +485

10 -.452 1.130 448 -.237 1.103 473
11 -.443 1.121 <469 -.233 1.078 .481
12 -.442 1.123 457 -.248 1.084 .485
13 -.435 1.122 457 -.249 1.084 .497
14 -.418 1.111 457 -.268 1.124 472
15 -.408 1.113 +455 -.264 1.132 .480
16 -.383 1.097 457 -.268 1.114 484
17 -.388 1.098 <459 -.274 1.100 «485
18 -.381 1.102 .455 -.278 1.086 <490
19 -.383 1.096 467 -.276 1.065 .498
20%* -.382 1.093 467 -.281 1.062 .501
21 -.384 1.094 468 -.295 1.066 497
22 -.382 1.084 468 -.303 1.069 .499
23 -.378 1.079 472 -.303 1.051 .501
24 -.388 1.071 479 ~-.307 1.053 <493
25 -.386 1.075 .483 ~-.311 1.061 .489

*0riginal boundaries were used for maximum likelihood

estimates.

**ASVAB/N validity at 20 items was .491.
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Table A-2

Mearns and Standard Deviations of Ability Estimates
and Criterion-Related Validity Correlations (r)

of BAYES and STMI Adaptive WK Tests in the

Fixed-Entry Condition, as a Function of Number of

Items Administered, for WK-AR Group (N=231)

Test BAYES STMI*

Length Mean SD r Mean SD r
0 -1.400 .000 .000 -1.400 .000 .000
1 -.376 .875 .169 -.945 436  .169
2 -.429 1.436 100 -+537 .638 .231
3 -.298 1.171 <156 -.124 .,993 .238
4 -.230 1.083 .161 -.009 1.169 .252
5 -.269 1.060 .191 -.033 1.084 .269
6 -.243 .989 .183 -,035 1.016 .282
7 ~-.200 .969 .186 -.041 986 .290
8 -.201 .938 224 -.068 .960 .290
9 -.185 .928 «238 -.088 .943 .288
10 -.206 .909 .237 -.092 .924 .280
11 -.205 .906 244 -.117 .910 .273
12 -.199 .903 .248 -.113 .894 .273
13 -.200 .899 «259 -.112 .886 272
14 -.197 .891 «259 ~.131 .880 .265
15 -.206 .882 «272 -.145 .878 .254
16 -.194 .873 .268 -.143 871 .262
17 -.188 874 +259 -.143 .874 .266
18 -.195 .861 «262 -.139 .868 .268
19 -.189 «862 272 -.147 .862 .273
20 -.188 .855 274 -.147 .857 .268
21 -.186 «852 «272 -.149 856 4269
22 -.180 .845 «282 -.153 .855 .275
23 -.183 .839 .280 -.155 .851 .271
24 -.180 .837 .287 -.156 855 .276
25 -.175 -840 +290 -.158 .855 .276
26 -.176 841 .291 -.161 .852 .276
27 -.181 842 <289 -.164 .853 272
28 -.178 .838 .289 -.161 .854 ,271
29 -.177 .839 +295 -.160 353 L,275
30> ~,171 .838 <294 -.163 .850 .276
31 -.172 .841 «290 -.165 855 .281
32 -.172 «842 «293 -.167 .858 .280
33 -.165 «840 +298 -.169 .854 .281
34 ~.167 <840 +300 -.169 .854 .285
35 .836 +297 -.170 .854 ,285

°0165

*Original boundaries were used

hood estimates.
*%ASVAB/N validity at 30 items was .294.
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Table A-3
Means and Standard Deviations of Ability Estimates
and Criterion-Related Validity Correlatiomns (r)
of BAYES and STMI Adaptive AR Tests in the
. Variable-Entry Condition, as a Function of Number of
! Items Administered, for WK-AR Group (N=231)

Test BAYES STMI* ;
Length Mean £3)] r Mean SD r :
[ :
0 -.620 460 .297 -.685 427 .285
l 1 -.448 1.108  .305 -.418  .807  .233 .
' 2 -.402  1.234  .336 -.365 1.067  .265 ‘
3 -.466 1.121  .337 -.383  1.335 .312
4 -.568 1.103  .327 -.355 1.277  .343
’ 5 -.589 1.084 .364 -.354  1.196  .341
t 6 -.569 1.038 .36l -.346  1.145  .347
! 7 -.596 1.032 .353 -.374  1.162 .340
8 -.584 1.052 .361 -.388 1.129 .385
! 9 -.562 1.048  .392 -.408 1.141  .405
‘ 10 -.553  1.036 .409 -.393 1.097 .415
' 11 -.537  1.032  .403 -.397 1.080 .426
: 12 -.525 1.030 .407 -.398 1.069 .426
; 13 -.526 1.029  .408 -.386 1.016  .425
| 14 -.518 1.056 .404 -.420 1.077 .407
: 15 -.513  1.052 .417 -.431  1.110  .371
! 16 -.510 1.043  .432 -.438 1.115 .385 d
17 -.520 1.050  .443 -.442 1.115  .387
18 -.529 1.056  .450 -.448 1.107 .384
19 -.532 1.046  .451 -.455 1.105 .398
' 20%* -.535 1.044  .457 -.486 1.155 .406
21 -.538 1.044  .460 -.487 1.169 .378
‘ 22 -.536 1.045  .465 -.488 1.147  .396
23 -.539 1.038 .470 -.499  1.146  .402 ,
! 24 -.541 1.037 .470 -.506 1.157  .417
25 -.542 1.036 .473 -.507 1.149  .425
) 4
I *0riginal boundaries were used for maximum likelihood :
estimates. %

*%ASVAB/N validity at 20 items was .448.
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Table A-4
Means and Standard Deviations of Ability

Estimates and Criterion-Related Validity

Correlations (r) of BAYES and STMI Adaptive
WK Tests in the Variable-Entry Condition,
as a Function of Number of Items Administered,

for AR-WK Group (N=221)

Test BAYES STMI*

Length Mean SD r Mean SD r
0 -.794 .709 483 -.851 «584 .489
1 -.394 1.175 «257 -.453 .782 2413
2 -.263 1.288 191 -.212 .936 «349
3 -.124 1.106 2224 071 1.144 314
4 -.093 1.063 «259 .047 1.143 .297
5 -.125 1.051 «255 .022 1.097 316
6 -.165 1.016 .306 -.016 1.091 .313
7 -.175 .993 «297 -.036 1.028 <345
8 -.188 .978 293 -.060 1.032 .333
9 ~-.183 «965 301 -.049 .995 344

10 ~-.181 .960 «299 -.048 .983 .330
11 -.167 «960 .306 -.058 .963 .333
12 -.153 .951 .305 -.063 .958 .333
13 ~.145 946 319 ~.066 946 .333
14 ~.153 .944 .322 -~.083 .949 346
15 ~.158 941 314 ~.090 944 .344
16 ~.152 .937 .323 ~.097 .938 .347
17 -.153 .939 .338 -.097 <940 «340
18 ~.145 .934 +340 -~.091 «935 .343
19 -.145 .933 340 -.095 .933 A7
20 -.138 <931 343 -~-.091 .926 .345
21 -.132 933 346 ~-.095 .927 347
22 ~.132 .922 .344 ~.099 <924 347
23 -.127 914 345 -.102 917 343
24 -.129 .909 .342 -.108 .914 344
25 -.132 910 .342  -.105 913 «341
26 -.135 .910 345 -.105 .916 .338
27 -.133 910 346 -.110 916 .339
28 -.134 .907 344  -.109 916 <342
29 -.135 .908 <345 -.111 .913 .343
30%* -.138 <904 .347 -.109 911 +346
31 -.140 .901 346  -.115 .906 .348
32 -.143 .898 347  -.114 .908 <350
33 -.142 .894 .355 -.118 .906 «355
34 -.145 .898 .355 -.117 .904 .357
35 -.150 .900 354 -.115 «904 <359

*Original boundaries were used for maximum likeli-
hood estimates.

**ASVAB/N validity at 30 items was .409.
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